The Physiological Correlates of Kundalini Yoga Meditation: A Study of a Yoga Master

Similar documents
East MEETS West. Scientific Research on the Effects of Yoga and Meditation

Brainmapping the Effects of Deeksha*

International Journal of Multidisciplinary Research and Modern Education (IJMRME) Impact Factor: 6.725, ISSN (Online):

ZEN PRACTICE AND SELF-CONTROL. Professor Shoji Nakamura. Department of Psychology, Komazawa University, Tokyo, Japan.

Energy Healing in Higher States of Consciousness. Judith Pennington Institute for the Awakened Mind

BRIEF REPORT: VERY DEEP HYPNOSIS

The Problem of Theodicy and Religious Response to Cancer

An Aquarian Model to Inspire and Uplift the Human Spirit

Consciousness Level and Correlation with Measurement of Chakra Energy

Perry Passaro, PhD. Anxiety and Depression Center Cognitive Behavior Therapy Specialists Newport Beach, California (949)

LIBERATE Meditation Coach Training

Have you heard of Super Brain Yoga?

Instantaneous Changes from Structured Breathing (Part 2)

EFFECT OF A YOGA PRACTICE SESSION AND A YOGA THEORY SESSION ON STATE ANXIETY 1

Yoga Teacher Training Diploma York Intake 1 June 2017 Schedule

The New Hermetics. Level 2 - The Zealot

B r e a t h o f L i f e 1 australian yoga life

THE ART OF MEDITATION by Tom Crum Becoming quiet in a busy world is something we would all love to do.

Phenomenological analysis

Analysis of Heart Rate Variability during Meditative and Non-Meditative State using Analysis Of variance

220 hour teacher training 2018 prospectus

SPIRITUAL DISCIPLINES

By Michael de Manincor

Guided Imagery as a Technique

Chapter 14 Vital Signs and Pain Management Vital Signs Reflect body changes that might not be noticed otherwise Compare readings to client s normal

Chronic traumatic encephalopathy Causes, symptoms and treatments.

The importance of insight meditation in leadership and teaching

The following Workshops & Seminars are designed to augment or integrate with existing teaching or training program(s).

Frequently Asked Questions Rejuvenation Retreat (India)

SOME THOUGHTS ON NEUROPHYSIOLOGICAL BASIS OF YOGA B.RAMAMURTHI*

Design and Implementation of EEG Signals Analysis on FPGA

PRANAYAMA AND BRAIN CORRELATES T. M. SRINIVASAN

Role of Spiritual Values on Spiritual Personality among MBBS Students of AMU

Memory Repair Protocol Meditation Mind Power

Zera Meditation. Theolyn Cortens. The foundation for spiritual progress. Copyright Theolyn Cortens. All rights reserved.

Yoga and Psychotherapy. Yoga Practices in a clinical setting. How Mindfulness Helps. Mood Disorder and Meditation. LifeForce Yoga Healing Institute

M.A./M.Sc. I Semester

The Art and Science of Pranayama. Murali Venkatrao Ananda Institute of Living Yoga Bothell, WA

Fundamentals of Meditation

Prentice Hall U.S. History Modern America 2013

Kaushal B. Nanavati MD, FAAFP, ABIHM

Tibetan Singing Bowls The ancient brain entrainment methodology for healing and meditation

Surgery without anesthesia may sound like a trick, but such operations. Hypnosis, Biofeedback, and Meditation. Reader s Guide. Exploring Psychology

The first step to changing your life

Executive Summary. Mind Mirror Measurements. Journey to Happiness Program, June The Monroe Institute

RESEARCHING ADVANCED MEDITATIVE STATES: PROBLEMS OF SUBJECT SELECTION

THE SCHOOL OF ROYAL YOGA, Inc.

The Art and Science of Alignment and Prop Integration

Yoga and Meditation Retreat in Lovina Bali

Family Studies Center Methods Workshop

Have you ever thought about Yoga for you and your child? I sure didn t! By: Lisa Calice

200-Hour Hatha Yoga Teacher Training at Yoga Padma Rishikesh, India

Yana Kazbekova (E-RYT500)

Evaluation of Students Concentration in Classroom with Quranic Recitation Background using Electroencephalogram

Prentice Hall United States History Survey Edition 2013

Applications of Maharishi Vedic Science to Developmental Psychology

Meditative movement: What s all the hype about anyway?

Meditation: The Guide To Self Enlightenment

A research for the meditation EEG NSC E

Creating Dance in the Hatha Yoga Concept

Week 1 - Mindful Living Yoga

Transcribed from

ENTRAINMENT AND THE SCIENCE OF ENERGY HEALING

Christians Say They Do Best At Relationships, Worst In Bible Knowledge

CYCLIC YOGA TEACHER TRAINING COURSE 2018

The Brain Waves of Reiki: A Study

TRADITIONAL AND SCIENTIFIC ANATOMY AND PHYSIOLOGY

Advanced +300HR Curriculum Overview

Chiara Mascarello, Università degli Studi di Padova

Bikram's Beginning Yoga Class By Bikram Choudhury

Australia. Australian Capital Territory - ACT

Avatar Adi Da s Final Summary Description of His Dialogue with Swami Muktananda

Kundalini. from BRETT LARKIN

Unbalanced Flows in the Subtle Body: A Talk by Professor Geoffrey Samuel

NEUROPHYSIOLOGY OF ENLIGHTENMENT

EFFECT OF SAHAJA YOGA ON MDA AND BLOOD THIOL LEVELS IN HEALTHY VOLUNTEERS

Distance & Online Yoga Teacher Training. Courses. When can I start? How long does the course take?

Q: How important is it to close your eyes while you practice mindufulness?

Macmillan/McGraw-Hill SCIENCE: A CLOSER LOOK 2011, Grade 3 Correlated with Common Core State Standards, Grade 3

SHANTI YOGA SCHOOL 300 HOUR CURRICULUM. Idaho s Yoga School Since 2008

Yoga Teacher Training Diploma Intake 30 September Schedule (v )

Weekend Workshop Proposal for. Weekend of Teachings with Yogi Ashokananda Sacred Anatomy 1 3 February 2019

What Is Yoga? Lesson and Activities

Sahaja Online: Corporate Workshops

At this time, when stress and stress-related illness have reached epidemic proportions,

What is Iyengar Yoga?

Maharishi Ayurveda is the revival of the traditional Vedic health care system of India,

Open Eye Meditation. The Visual Way for Development of the Inner Sense (Ajna Chakra) Christianity All Seeing Eye in a triangle

The New Age Conspiracy Program No SPEAKER: JOHN BRADSHAW

Dr. John Duillard about slow yoga

Pondicherry University Community College POST GRADUATE DIPLOMA IN YOGA. Model Questions SCIENTIFIC BASIS OF YOGA EDUCATION

MAHIDOL UNIVERSITY Wisdom of the Land

IMPORTANCE AND APPLICATION OF DIFFERENT YOGA IN PHYSICAL EDUCATION

Biofeedback and the Higher States of Consciousness

YOGA TEACHER TRAINING COURSE HEALTH IS WEALTH. PEACE OF MIND IS HAPPINESS. YOGA SHOWS THE WAY. SWAMI VISHNUDEVANANDA SAYS

Recreating Near-Death Experiences: A Cognitive Approach

Yoga Teacher Training 200 Hour Certificate Program Program

The Aquarian Teacher Mackay 2015 KRI Level 1 Teacher Training Program Instructor Certification - Foundations

Welcome to Mindful Being! Mindful Being is dedicated to teaching individuals how to use their brain/minds to change their lives.

SAMKARA LUXURY YOGA RETREATS

Transcription:

Applied Psychophysiology and Biofeedback, Vol. 26, No. 2, 2001 The Physiological Correlates of Kundalini Yoga Meditation: A Study of a Yoga Master Pete Arambula, 1,2 Erik Peper, 1 Mitsumasa Kawakami, 1 and Katherine Hughes Gibney 1 This study explores the physiological correlates of a highly practiced Kundalini Yoga meditator. Thoracic and abdominal breathing patterns, heart rate (HR), occipital parietal electroencephalograph (EEG), skin conductance level (SCL), and blood volume pulse (BVP) were monitored during prebaseline, meditation, and postbaseline periods. Visual analyses of the data showed a decrease in respiration rate during the meditation from a mean of 11 breaths/min for the pre- and 13 breaths/min for the postbaseline to a mean of 5 breaths/min during the meditation, with a predominance of abdominal/diaphragmatic breathing. There was also more alpha EEG activity during the meditation (M = 1.71 V) compared to the pre- (M =.47 V) and postbaseline (M =.78 V) periods, and an increase in theta EEG activity immediately following the meditation (M =.62 V) compared to the pre-baseline and meditative periods (each with M =.26 V). These findings suggest that a shift in breathing patterns may contribute to the development of alpha EEG, and those patterns need to be investigated further. KEY WORDS: meditation; EEG; alpha; respiration; breathing. Previous studies of the physiological correlates of meditation have been reported, although most have focused only on transcendental meditation (Corby, Roth, Zarcone Jr, & Kopell, 1978; Cusumano & Robinson, 1992; Delmonte, 1984a, 1984b; Dostalek, Faber, Krasa, & Vele, 1979; Jevning, Wallace, & Beidebach, 1992; Morse, Cohen, Furst, & Martin, 1984; Sawada & Steptoe, 1988; Stewart, 1974; Sudsuang, Chenttanez, & Veluvan, 1991; Telles, Narendran, Raghuraj, Nagarathna, & Nagendra, 1997; Travis & Wallace, 1997; Wood, 1986; Woolfolk, 1975). Only a small number centered on yogic practices, and even fewer studied individuals considered expert meditators. Because experts in yoga meditation are rarely available to researchers the subjects of such inquiries usually have practiced only a few years. For example, Becker and Shapiro (1981) and Corby et al. (1978) report on groups of experts who had a mean of only 4 5 years of yogic meditation practice. 1 San Francisco State University, California. 2 Address all correspondence to Pete Arambula, 4039 East Hayhurst Lane, Tucson, AZ 85712; email: petearambula@earthlink.net. 147 1090-0586/01/0600-0147$19.50/0 C 2001 Plenum Publishing Corporation

148 Arambula, Peper, Kawakami and Gibney Research data indicate that there are varying physiological correlates associated with meditation. Some studies, for example, show increased alpha or theta electroencephalograph (EEG) activity (Becker & Shapiro, 1981; Dostalek et al., 1979; Herbert & Lehmann, 1977; Kasamatsu, Okuma, & Takenaka, 1957), whereas others show more beta or even some delta EEG present (Anad, China, & Singh, 1961; Das & Gastaut, 1957). Some studies show a decrease in heart rate (HR) and respiration rate (Bagchi & Wegner, 1957; Wegner & Bagchi, 1961), whereas others show increases or no change in these measures (Anad et al., 1961; Corby et al., 1978; Cusumano & Robinson, 1992; Dicarlo, Sparling, Hinson, Snow, & Rosskopf, 1994). Similarly, there are paradoxical data on skin conductance level (SCL); some report an increase in skin conductance (Bagchi & Wegner, 1957; Corby et al., 1978), whereas others report decreases (Jevning et al., 1992). The dissimilarities between studies on the physiological correlates of yoga may be due to the variability of yoga practices as well as methodological flaws (Woolfolk, 1975). Woolfolk also suggests that a lack in experience of those being studied may play a role in the contradictory findings. This notion that experience may play a role in the findings in research of yoga meditation is supported by Delmonte (1984a), who found in his review of two longitudinal designs that subjects showed significant changes in alpha EEG activity only after longer periods of practicing meditation (Glueck & Stroebel, 1975; Vassiliadis, 1973). Telles et al. (1997) found significant respiratory changes in girls at a community home only after 6 months of yoga practice. These observations support the hypothesis that experience may play a role in the physiological correlates of yoga meditation. Hence, more research with individuals who are highly experienced in meditation is needed. This study is an investigation into the physiological correlates of a well-trained Kundalini Yoga meditator. METHODS Subject The subject is a male, 59 years old, Japanese Yogi with 32 years of experience practicing various forms of yoga. He is the founder and Chief Executive Director of his own school of yoga and Institute for Research of Subconscious Psychology in Fukuoko and Tokyo, Japan. The title of Yoga Samrat was bestowed upon him by the Indian Yoga Culture Federation in 1983, after demonstrating that he had reached the highest level of proficiency in his discipline. He came to the United States to participate in this research project as part of his growing interest and contribution to scientific inquiries into meditation. He used a form of Kundalini Yoga meditation for this study. Equipment Physiological data were collected with a FlexComp (Thought Technology, Ltd.). Abdominal and thoracic respiration patterns were recorded with strain gauges. The abdominal strain gauge was placed at the level of the umbilicus and the thoracic strain gauge was placed just below the axilla. Bipolar EEG was recorded with silver silver chloride electrodes from occipital (O2) and parietal (P4) areas; reference was attached to the right earlobe. The EEG signal was filtered for alpha (7 13Hz) and theta (3 7Hz). Blood volume pulse (BVP) was

Physiological Correlates of a Kundalini Yoga Meditation Master 149 recorded with a photoplethysmograph from the distal phalange of the right thumb. Heart rate was derived from the BVP signal. Procedures The subject changed into loose fitting clothing, which he uses for meditation. Sensors were then attached. While under continuous observation by a number of onlookers, he sat on a padded massage table in shidda asana (a position similar to half lotus), with eyes closed while the equipment was calibrated (the duration of this period was approximately 10 min). He then continued sitting quietly with eyes closed for a 3-min prebaseline recording. This was followed by 15 min of eyes-closed meditation, and a 3-min postbaseline period also with eyes shut. Data Analyses The data were visually analyzed using means from 30-s intervals of the physiological recordings. RESULTS There was a noticeable decrease in respiration rate during the meditation (M = 5) when compared to the pre- (M = 11 breaths/min) and post-baseline periods (M = 13 breaths/min), as seen in Fig. 1. The subject s abdominal breathing pattern became more pronounced during meditation. There was an increase in abdominal over thoracic breathing during meditation when compared to pre- and postbaseline periods (see Fig. 2). There was also enhanced alpha EEG activity during meditation (M = 1.71 V) when compared to the pre- (M =.47 V) and postbaselines (M =.78 V), and more theta EEG activity following the meditation (M =.62 V) when compared to the prebaseline and meditation (each with M =.51 V), as shown in Fig. 3. The subject reported that, when instructed to do so, he quickly entered a meditative state and remained in this state during the entire 15-min recording. There did not appear to be any notable changes in HR or BVP; therefore these data are not presented. DISCUSSION The decrease in respiration from 11 (prebaseline) and 13(postbaseline) to5 breaths/min, with continued slow breathing at 5 breaths/min during the meditation period, demonstrates significant meditative control and experience by this Yogi. It suggests a decrease in arousal that appears consistent with other findings on the physiological correlates of meditation that show a decrease in respiration. Although previous studies have reported a decrease in breathing rate, the pattern of breathing is not usually noted. In this subject there was a consistent increase in abdominal over thoracic breathing seen during the meditation period. Abdominal/diaphragmatic breathing seems to be an integral part of many relaxation techniques. Because of this, a closer examination of abdominal breathing patterns of well-trained

150 Arambula, Peper, Kawakami and Gibney Fig. 1. Number of breaths per 30-s intervals during the pre-, meditative, and post-baseline periods. Fig. 2. Abdominal vs. Thoracic breathing patterns per 30-s intervals during the pre-, meditative, and post-baseline periods.

Physiological Correlates of a Kundalini Yoga Meditation Master 151 Fig. 3. Alpha and Theta EEG activity per 30-s intervals during the pre-, meditative, and post-baseline periods. practitioners of meditation may reveal important findings. Researchers may discover, for example, that breathing plays a much more pivotal role in acquiring and maintaining a meditative state than previously thought. There appears to be a significant increase in alpha wave production by the Yogi when he entered his meditative state, which was closely associated with the slower abdominal breathing discussed above. This production of alpha EEG is consistent with many other findings on the physiological correlates of meditation and yoga (Anad et al., 1961; Corby et al., 1978; Delmonte, 1984a; Dostalek et al., 1979; Kamatsu et al., 1957; Woolfolk, 1975). However, none have discussed the possible influence of respiration on alpha EEG production. The correlation between deep, slow, abdominal breathing and alpha EEG production suggests that this type of breathing pattern may contribute to the increase in alpha EEG as proposed by Fried (1987). A measure of metabolic rate and PCO 2 may help further our understanding of physiological processes during meditation. These findings further suggest that respiration may play an integral role in acquiring and maintaining a meditative state. An increase in theta activity immediately following the meditation also seemed apparent in this case study. Although there are studies reporting some theta activity during meditation (Corby et al., 1978; Herbert & Lehmann, 1977; Jevning et al., 1992), there are no studies reporting on this kind of activity following a period of meditation. Because theta can be associated with pleasure, it is not surprising that it was recorded following an activity for which the subject has many years experience. One would expect an individual to continue practicing meditation for such a long period of time only if it were enjoyable to him or her. Many of the findings here are similar to those in previous reports on the physiological correlates of meditation and yoga (Jevning et al., 1992; Morse et al., 1984; Delmonte, 1984a; Woolfolk, 1975). The uniqueness of this investigation is in the level and expertise

152 Arambula, Peper, Kawakami and Gibney of the subject that was studied. Examining such individuals may help to better identify the physiological correlates, and benefits of the exercise by revealing development that takes place only after achieving a high level of proficiency. This may help explain the contradictory findings surrounding the physiological correlates of meditation by creating a more accurate and complete picture of physiology during meditative practices. Although respiration patterns have often been associated with meditation, few studies report on this data. The finding that a subject can breathe continuously at about 5 breaths/min without experiencing any air hunger or excessive arousal, with a concurrent increase in occipital alpha EEG activity, demonstrates the meditative skills of the subject. Breathing may also be one of the physiological mechanisms by which the meditation experience can easily be integrated and anchored into daily life. By refocusing on breathing during the day, the meditative state may be reestablished. Further studies comparing advanced practitioners of yoga to those who are less proficient would be desirable, as would research on larger groups of expert practitioners so that meaningful statistical analyses could be done. REFERENCES Anad, B. K., China, G. S., & Singh, B. (1961). Some aspects of electroencephalographic studies in yoga. Electroencephalography and Clinical Neurophysiology, 13, 452 456. Bagchi, B. K., & Wegner, M. A. (1957). Electrophysiological correlates of some yogi exercises. Electroencephalography and Clinical Neurophysiology, 7, 132 149. Becker, D. E., & Shapiro, D. (1981). Physiological responses to clicks during zen, yoga, and TM meditation. Psychophysiology, 18(6), 694 699. Corby, J. C., Roth, W. T., Zarcone Jr, V. P., & Kopell, B. S. (1978). Psychophysiological correlates of tantric yoga meditation. Archives of General Psychiatry, 35, 571 577. Cusumano, J. A., & Robinson, S. E. (1992). The short term psychophysiological effects of hatha yoga and progressive relaxation on female Japanese students. Applied Psychology: An International Review, 42(1), 77 90. Das, N. N., & Gastaut, H. (1957). Variations de l activite electrique du cerveau du coeur et des muscles quelletiques au cours de la meditation et de l extase yogique. Electroencephalgraphy and Clinical Neurophysiology, 6, 211 219. Delmonte, M. M. (1984a). Electrocortical activity and related phenomena associated with meditation practice: A literature Review. International Journal of Neurosciences, 24, 217 231. Delmonte, M. M. (1984b). Physiological concomitants of meditation practice. International Journal of Psychosomatics, 31(4), 23 26. DiCarlo, L. J., Sparling, P. B., Hinson, B. T., Snow, T. K., & Rosskopf, L. B. (1994). Cardiovascular, metabolic, and perceptual responses to hatha yoga standing poses. Medicine Exercise Nutrition Health, 4, 107 112. Dostalek, C., Faber, J., Krasa, H., & Vele, F. (1979). Meditational yoga exercises in EEG and EMG. Ceskoslovenska Psychologie, 23(1), 61 65. Fried, R. (1987). The hyperventilation syndrome: Research and clinical treatment. Baltimore and London: The John Hopkins University Press. Glueck, B., & Stroebel, C. (1975). Biofeedback and meditation in the treatment of psychiatric illnesses. Comprehensive Psychiatry, 16, 303 321. Hebert, R., & Lehmann, D. (1977). Theta bursts: An EEG pattern in normal subjects practicing the transcendental meditation technique. Electroencephalgraphy and Clinical Neurophysiology, 42, 397 405. Jevning, R., Wallace, R. K., & Beidebach, M. (1992). The physiology of meditation: A review. A wakeful Hypometabolic integrated response. Neuroscience and Biobehavioral Reviews, 16, 415 424. Kasamatsu, A., Okuma, T., & Takenaka, S. (1957). The EEG of zen and yoga practitioners. Electroencephalography and Clinical Neurophysiology, 9, 51 52. Morse, D. R., Cohen, L. C., Furst, M. L., & Martin, J. S. (1984). A physiological evaluation of the yoga concept of respiratory control of autonomic nervous system activity. International Journal of Neurosciences, 31, 3 19. Sawada, Y., & Steptoe, A. (1988). The effects of brief meditation training on cardiovascular stress responses. Journal of Psychophysiology, 24, 249 257.

Physiological Correlates of a Kundalini Yoga Meditation Master 153 Stewart, R. A. C. (1974). States of human realization: Some physiological and psychological correlates. Psychologia, 17, 126 134. Sudsuang, R., Chenttanez, V., & Veluvan, K. (1991). Effect of Buddhist meditation on serum cortisol and total protein levels, blood pressure, pulse rate, lung volume, and reaction time. Physiology and Behavior, 50, 543 548. Telles, S., Narendran, S., Raghuraj, P., Nagarathna, R., & Nagendra, H. R. (1997). Comparison of changes in autonomic and respiratory parameters of girls after yoga and games at a community home. Perceptual and Motor Skills, 84, 251 257. Travis, F., & Wallace, R. K. (1997). Autonomic patterns during respiratory suspensions: Possible markers of transcendental markers. Psychophysiology, 34, 39 46. Vassiliadis (1973). Longitudinal and physiological changes of TM practice. Paper presented at APA convention, Montreal. Wegner, M. A. & Bagchi, B. K. (1961). Studies of autonomic functions in practitioners of yoga in India. Behavioral Science, 6, 312 323. Wood, C. J. (1986). Evaluation of meditation and relaxation on physiological response during the performance of fine motor and gross motor tasks. Perceptual and Motor Skills, 62, 91 98. Woolfolk, R. L. (1975). Psychophysiological correlates of meditation. Archives of General Psychiatry, 32, 1326 1333.

Copyright of Applied Psychophysiology & Biofeedback is the property of Springer Science & Business Media B.V. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.