# A BRIEF INTRODUCTION TO LOGIC FOR METAPHYSICIANS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 A BRIEF INTRODUCTION TO LOGIC FOR METAPHYSICIANS 0. Logic, Probability, and Formal Structure Logic is often divided into two distinct areas, inductive logic and deductive logic. Inductive logic is concerned with probabilities. That is, in an inductive argument we attempt to show that if the premises of the argument are (all) true, then the conclusion is probably true. Consider the following argument: Most men are bachelors. Jones is a man. So, Jones is (probably) a bachelor. If the premises of this argument are true, then the conclusion is probably true. But, of course, it is possible that the conclusion is false, even given the truth of the premises. This kind of argument only attempts to establish probability. We will, in general, not be concerned with this kind of argument. Deductive arguments, on the other, attempt to show that if the premises are true, then the conclusion must be true i.e., that it cannot possibly be false. It is deductive arguments that we will be concerned with in this introduction to logic. An important feature of deductive arguments is that their success or failure depends upon the form of the argument, not its specific content. Consider the following argument: All bachelors are male. Jones is a bachelor. So, Jones is male. In this argument, the truth of the premises guarantees the truth of the conclusion. But note that this has nothing to do, specifically, with Jones, bachelorhood, or with being male. The argument is just an instance of the following form: All A s are B s x is an A. So, x is a B. It doesn t matter what we plug in for A, B or x. And this means that any argument with this form will always have the property of being such that if the premises are true, then the conclusion must be true. The point here is that in deductive reasoning, we are concerned with the form of arguments. But arguments are composed of statements (or propositions ), and this means that we must be concerned with the form or internal structure of statements. The following sections discuss methods for highlighting differing degrees of the internal structure of statements.

2 1. Truth functional logic (i.e., propositional logic) Since logic is concerned with the evaluation of arguments, and arguments are composed of statements (i.e., propositions), logic must be concerned with the structure of statements. As we shall see, we can, depending upon how we represent a given statement, exhibit more or less of its structure. Consider the following argument: If Bush is a Republican, he voted for Cheney. Bush is a Republican. So, Bush voted for Cheney. This argument is composed of three statements, two premises, and the conclusion. Suppose we represented each distinct statement with a distinct symbol let us use capital letters. Then, we would represent the argument as: A B C ( = therefore ) As we can see, this way of representing the statements that comprise this argument show us nothing interesting about it. These three symbols could just as well represent any three statements, whether or not they constituted a good argument. In this case, our way of representing the statements shows us nothing about their internal structure. But it is an immediately obvious feature of the first statement of our argument that it in some sense contains both of the other statements. We need some way to represent this. To do this, we will introduce truth functional logic. Truth functional logic is the logic of statements where the truth value (i.e., truth or falsity) of statements is a function of its components. Consider a simple example: It is not the case that Bush is President. The truth value of this statement is a function of its component, Bush is President. What this means is that the truth or falsity of the first statement is entirely determined by (in mathematical terms, is a function of) the truth value of the second. In general, if I know the truth value of P, I also know (or can infer) the truth value of It is not the case that P. We will say that a statement is truth functionally atomic if its truth value is not a function of any of its proper (truth functional) components. (A proper component of a statement is any smaller statement contained in it i.e., any part of it other than itself.) We will also say that a statement is truth functionally compound if it is not truth functionally atomic. (Note that not all compound statements are truth functionally compound. Cheney believes that Bush is President contains Bush is President as a (non-truth functional) part, but the truth or falsity of the part does not in

3 itself determine the truth or falsity of the larger compound.) Until we complicate matters in the next section, we will use capital letters to stand for truth functionally atomic statements. Although not all are strictly necessary, there are typically five ways of forming truth functional compounds, that is, five kinds of truth functional compound statements: negations ( not statements), conjunctions ( and statements ), disjunctions ( or statements), conditionals ( if then statements), and biconditionals ( if and only if statements). How these compounds function is usually given by truth tables. In what follows, let us use lower case letters to stand for propositional variables i.e., p and q can stand for any statements at all, compound or atomic. Negations are easy. The truth value of the negation of a statement is simply the opposite of the truth value of the original statement. The sign we will use to represent negation is tilde ~. The truth table for negation is: p ~p T F F T Each row in the table represents a distinct distribution of truth values to the components of the compound in question in the case, a negation. Since there is only one (proper) component here, there are two possibilities. (In general, where there are n distinct components, there are 2 n distinct distributions of truth values to those components.) So the table here says that for any statement p, if p is true, ~p is false, and if p is false, then ~p is true. Let us construct truth tables for the other compounds in like fashion. The symbol for conjunction is the dot., and the wedge v for disjunction. (The specific symbols used often vary.) The tables are as follows: p q p. q p q p v q T T T T T T T F F T F T F T F F T T F F F F F F In other words, a conjunction is true just in case both its parts (its conjuncts ) are true, and a disjunction is false just in case both its parts (its disjuncts ) are false. The symbol for conditionals is the horseshoe, and the triple bar for biconditionals. Their truth tables are as follows: p q p q p q p q T T T T T T T F F T F F F T T F T F F F T F F T

4 Note that a conditional is false just in case its antecedent (what comes before the horseshoe the if clause) is true and its consequent (what comes after the horseshoe the then clause) is false. This may seem odd, in that not all English statements have this feature. But at least some do (and the rest are not truth functional conditionals), and that is how we will treat them for now. Biconditionals are true just in case both their components have the same truth value, i.e., either are both true or are both false. Now we are in a position to better represent the argument we consider earlier. Let R stand for Bush is a Republican, and C stand for Bush voted for Cheney. Now the argument comes out: R C R C And now we can see why this is a good argument. Assuming that the premises are true, we know that both R C and R are true. But then, given the truth table for, we know that C must be true. (That is, for every line on the truth table where both the conditional and its antecedent are true, the consequent is also true. See for yourself.) So, we know that if the premises are true, then the conclusion must be true it cannot possibly be false. This, in turn, gives us the definition of a valid argument: An argument is valid if the truth of the premises guarantees the truth of the conclusion. In other words, if the premises are all true, the conclusion cannot possibly be false it must be true. Note that an argument can be valid even if one or more of its premises are false, or even if its conclusion is false. Consider: If Cheney is a Democrat, he voted for Jay Leno. Cheney is a Democrat. Therefore, Cheney voted for Jay Leno. Again, were the premises true (even though they probably aren t!) then the conclusion would have to be true. So validity is an iffy property of arguments. To say that an argument is valid is not to say that any of the statements that make it up are in fact true. It is only to say that if the premises are all true, then the conclusion must be true. Finally, we must occasionally use parentheses in our symbolic representations of statements in order to make clear the scope of each truth functional connective. Consider: Cheney is a Democrat or Bush is a Republican and Bush is President. How is this to be understood? Does it say 1) that either Cheney is a Democrat or it is true both that Bush is a Republican and that Bush is President? Or does it say 2) that both of the statements Either Cheney is a Democrat or Bush is a Republican and Bush is President are true? That is, is this a disjunction whose second disjunct is a

5 conjunction, or is it a conjunction whose first conjunct is a disjunction? To distinguish these possibilities, we need parentheses. The first possibility would be represented: C v (R. P) while the second comes out: (C v R). P. So much for truth functional logic. 2. Predicate Logic We said earlier that logic was concerned with the structure of statements, and that we could, depending upon how we represented them, exhibit more of less of that structure. By assigning simple symbols (in this case, capital letters) to truth functionally atomic statements, we exhibit none of their internal structure. Nevertheless, statements that are truth functionally atomic sometimes contain additional structure that is relevant to evaluating arguments. Consider the following three statements: Clinton is president. Bush is president. Bush is married. You will note that the middle statement has something (different) in common with each of the other two statements. But since each is truth functionally atomic, each would be represented by a distinct capital letter, which would exhibit none of this internal structural similarity. Consequently, we may want to complicate the way we represent truth functionally atomic statements. Intuitively, each of these statements is composed of a subject and a predicate. The first two share the same predicate ( is president ), while the last two share the same subject ( Bush ). To exhibit this, we will complicate our language in the following way: we will use capital letters to stand for predicates, and lower case letters to stand for names, or other referring expressions. So let P stand for is president, M stand for is married, c stand for Clinton, and b stand for Bush. (There is a general convention to use letters at the beginning of the alphabet for names.) Now we can make the structural similarity of these three statements apparent by representing them thus: Pc Pb Mb. (We might read the first as P of c, or P is true of c, or, more intuitively, c has property P. ) But of course, not all truth functionally atomic statements are quite so simple. Each of the above attributes a property to a single individual. But we might also want to

6 say that two or more individuals stand in some relation to one another. Consider, Reagan was president before Bush. Letting P stand for was president before, a stand for Reagan, and b stand for Bush, we could represent this as: Pab. (This is sometimes written apb. ) (That is, a stands in the relation P to b. ) Of course, there are three place relations ( John gave a gift to Wanda ), four place relations ( Betty gave Bruce an STD which she received from Bob who got it from Bill ), and so on. We call the predicates that stand for properties (i.e., that can be attributed only to one thing at a time) one place predicates, predicates that stand for relations between two things, two place predicates, and so on. At this point, these truth functionally atomic statements can be compounded just as before, and none of this will alter our evaluation of arguments. So, letting R stand for is a republican, V stand for voted for, and C stand for Cheney, we can represent our first argument as: Rb Vbc Rb Vbc Note that within any given example, the meaning of any of these letters is clear. That is, each names some specific thing, property, or relation. Thus, each is called a term : predicates will be called general terms and names (or other expressions taken as referring to some specific individual), individual terms. These are to be distinguished from variables, which will be introduced in the following section. So much for predicate logic. 3. Quantificational Logic Consider the following argument: All men are mortal. Socrates is a man. Therefore, Socrates is mortal. This argument seems intuitively valid, yet we cannot represent it as such given the tools available to us at this point. Given our understanding of predicate logic, we can see that there is plenty of internal structure here, and we can even see how to represent the last two statements. Letting a stand for Socrates, H for is a man (i.e., is human ), and M for is mortal, the last two statements become Ha and Ma respectively. But how do we represent the first statement? It will help us to translate the first statement to the following: Take anything you like, if it is a man, then it is mortal. (In

7 other words, Everything that is a man is also mortal. ) Now, consider the latter part of this translation, the part that comes after Take anything you like. Note that here we find our predicates is a man and is mortal being predicated of it. Note further that it, in isolation, has an indeterminate reference. I.e., what it stands for is determined by the first part of the sentence, and if you isolate it from that part of the sentence, what is left is nothing but a kind of empty place holder for a name or referring expression to be supplied by the general context. It in this case functions much like a variable in mathematics, and so, as in mathematics, we will use lower case letters towards the end of the alphabet (typically, x, y, and z ) as standing for different occurrences of the word it. (We need more than one variable letter as some sentences contain multiple uses of the word it with distinct references.) So, it is mortal would be written Mx and it is a man, Hx. And so, can be represented if it is man then it is mortal Hx Mx. We are still not finished, however. What should we do the phrase, Take anything you like? Without this phrase (or something like it), our statement doesn t really make any sense, because we do not know what the it is that we are speaking about. So this phrase establishes the reference(s) of it in our sentence, and it says the it we are speaking about is any it. We are speaking of all its. So, we are in effect saying, Take anything you like, call it x, if x is a man, then x is mortal. Alternately, For all x, if x is a man, then x is mortal. So we need a way of representing the phrase For all x. For this we will introduce what is called the Universal Quantifier, represented by an upside down A ( ), followed by the variable to stand for it. So, All men are mortal (i.e., Take anything you like, if it is man, then it is mortal ), can be represented ( x)(hx Mx). Note: in some texts, the upside down A is eliminated, and so (x) would represent the expression For all x. Also, in some texts the parentheses around the quantifier x are omitted. But the other parentheses are more important. They define the scope of the quantifier that precedes them. Recall that it is the quantifier that tells us what it ( x ) stands for (or ranges over ). But some statements contain more than one quantifier (i.e., multiple uses of the word it with distinct references), and so the use of parentheses is then necessary to distinguish the scope of each quantifier (i.e., which it it ranges over or binds ). Although not strictly necessary, it is customary to define one additional quantifier. While the universal quantifier stands for everything, it is often convenient to have another to stand for something. This is called the Existential Quantifier, and is represented by a backwards E ( ). So if I want to say Something is a man (i.e., there is something such that it is man ), I would represent it as

8 ( x)hx. To see how all of this works, let me translate a few statements into our symbolic language with quantifiers. (I will leave it to you to figure out what capital letters I used to represent various predicates.) Everything is attracted by everything. ( x)( y)(axy) (Take anything you like, call it x, and anything you like, call it y, x attracts y.) All bodies attract one another. ( x)( y)((bx. By) Axy) (Take anything you like, call it x, and anything you like, call it y, if it is true both that x and y are bodies, then x attracts y.) Everybody loves somebody. ( x)(px ( y)(py. Lxy)) (Take anything you like, call it x, if it (x) is a person then there is something, call it y, such that it (y) is a person, and such that x likes y.) Somebody loves everybody. ( x)(px. ( y)(py Lxy)) (There is something, call it x, such that x is a person and such that for anything you like, call it y, if y is a person, then x loves y.) Everybody doesn t love something, but nobody doesn t love Sara Lee. ( x)(px ( y)(~lxy)). ~( x)(px. ~Lxs) (Take anything you like, call it x, if x is person then there is some thing, call it y, such that it is not the case that x likes y; AND it is not the case that there is a thing, call it x, such that x is a person and does not like Sara Lee.) Some additional terminology: a variable that occurs within the scope of a quantifier that quantifies over it is called a bound variable. (E.g., x but not y in ( x)pxy.) If it is not bound, it is free. Sentences with free variables are sometimes called open sentences. (An example occurred within the previous parentheses. They are called open because they are incomplete. It is as if they had a hole in them. Consider Sx. This simply says that it is S, but it tells us nothing about what it is. It is a kind of place holder for some specific referring expression, and so in a sense, Sx remains open, or incomplete until it is closed by specifying the range of x with a quantifier.)

9 Finally, note that in order to evaluate arguments in which such sentences occur, we will need to formalize some rules clarifying the implications of such quantified sentences. We need not go into all of them here, but two are worth mentioning. The first is what is sometimes called Universal Instantiation. The idea is that if everything has some given property, then any specific thing we name must have that property. The second one is sometimes called Existential Generalization. This principle says that if we know that some specific thing has some property, we can infer the more general statement that something (or other) has this property. So this principle would sanction our reasoning from Sa (i.e., the individual a has the property S) to ( x)sx. This second principle turns out to be more controversial than the first. 4. What s in a Name? A lot, as it turns out. (This section can be read as an introduction to Quine s On What There Is. ) It is noteworthy that a lot of English can be more or less adequately "translated" into the quantified symbolic logic we created above. All of mathematics can be translated into it, as well as the physical sciences. (There are problems when we come to the statements of psychology. Should this be surprising?) So, all (or almost all) of our scientific theories can be translated into this language. Next, note the connection between our theories or explanations and our ontological commitments. ( Ontological commitments are the implications regarding existence that are found in our beliefs, or in the things we say.) We believe (if we believe) in the existence of quarks because we believe (if we believe) that our best physical theories talk about such things. So (the statements that make up) our explanations of things dictate our ontological commitments. That is, our best explanations. This is not to say that what there is (really) is determined by the kinds of theories we have, but only that what we can (and must) reasonably believe there to be is determined by our explanations. So our ultimate ontological commitments can, with a little work, be "read" from how we talk about things in our best explanations. But consider the following sentences: and Bob doesn t ski. Santa Claus doesn t exist. The two statements apparently have the same internal structure. They each apparently say of some object that it fails to have some property. We might represent the structure of the first statement by paraphrasing it as:

10 There is something, named Bob, and it is false that this thing skis. i.e., ( x)(x is named Bob. ~x skis) But if each of these statements has the same internal structure, then the second one should be paraphrased as: There is something, named Santa Claus, and it is false that this thing exists. i.e., ( x)(x is named Santa Claus. ~x exists) But now look what has happened: we have apparently committed ourselves to the existence of Santa Claus in the very statement in which we set out to deny it. We have said that there is something, and that this something has (or, in this case, fails to have) a certain property. The point here is that we might intuitively look to the names (or other referring expressions) in our statements as expressing our ontological commitments. The problem is that we have names for things that do not exist. Are we thus committed to the existence of Santa Claus, flying horses, and Sherlock Holmes? Question: What s a (metaphysically inclined) logician to do? Answer: Either change our logic (Quine), or change our metaphysics (Parsons). So much for our introduction to logic. Now on to Metaphysics!

### Logic: A Brief Introduction

Logic: A Brief Introduction Ronald L. Hall, Stetson University PART III - Symbolic Logic Chapter 7 - Sentential Propositions 7.1 Introduction What has been made abundantly clear in the previous discussion

### What are Truth-Tables and What Are They For?

PY114: Work Obscenely Hard Week 9 (Meeting 7) 30 November, 2010 What are Truth-Tables and What Are They For? 0. Business Matters: The last marked homework of term will be due on Monday, 6 December, at

### Russell: On Denoting

Russell: On Denoting DENOTING PHRASES Russell includes all kinds of quantified subject phrases ( a man, every man, some man etc.) but his main interest is in definite descriptions: the present King of

### INTERMEDIATE LOGIC Glossary of key terms

1 GLOSSARY INTERMEDIATE LOGIC BY JAMES B. NANCE INTERMEDIATE LOGIC Glossary of key terms This glossary includes terms that are defined in the text in the lesson and on the page noted. It does not include

### Logicola Truth Evaluation Exercises

Logicola Truth Evaluation Exercises The Logicola exercises for Ch. 6.3 concern truth evaluations, and in 6.4 this complicated to include unknown evaluations. I wanted to say a couple of things for those

### Today s Lecture 1/28/10

Chapter 7.1! Symbolizing English Arguments! 5 Important Logical Operators!The Main Logical Operator Today s Lecture 1/28/10 Quiz State from memory (closed book and notes) the five famous valid forms and

### 10.3 Universal and Existential Quantifiers

M10_COPI1396_13_SE_C10.QXD 10/22/07 8:42 AM Page 441 10.3 Universal and Existential Quantifiers 441 and Wx, and so on. We call these propositional functions simple predicates, to distinguish them from

### Theories of propositions

Theories of propositions phil 93515 Jeff Speaks January 16, 2007 1 Commitment to propositions.......................... 1 2 A Fregean theory of reference.......................... 2 3 Three theories of

### A. Problem set #3 it has been posted and is due Tuesday, 15 November

Lecture 9: Propositional Logic I Philosophy 130 1 & 3 November 2016 O Rourke & Gibson I. Administrative A. Problem set #3 it has been posted and is due Tuesday, 15 November B. I am working on the group

### Chapter 8 - Sentential Truth Tables and Argument Forms

Logic: A Brief Introduction Ronald L. Hall Stetson University Chapter 8 - Sentential ruth ables and Argument orms 8.1 Introduction he truth-value of a given truth-functional compound proposition depends

### Essential Logic Ronald C. Pine

Essential Logic Ronald C. Pine Chapter 11: Other Logical Tools Syllogisms and Quantification Introduction A persistent theme of this book has been the interpretation of logic as a set of practical tools.

### HANDBOOK (New or substantially modified material appears in boxes.)

1 HANDBOOK (New or substantially modified material appears in boxes.) I. ARGUMENT RECOGNITION Important Concepts An argument is a unit of reasoning that attempts to prove that a certain idea is true by

### Symbolic Logic. 8.1 Modern Logic and Its Symbolic Language

M08_COPI1396_13_SE_C08.QXD 10/16/07 9:19 PM Page 315 Symbolic Logic 8 8.1 Modern Logic and Its Symbolic Language 8.2 The Symbols for Conjunction, Negation, and Disjunction 8.3 Conditional Statements and

### Generic truth and mixed conjunctions: some alternatives

Analysis Advance Access published June 15, 2009 Generic truth and mixed conjunctions: some alternatives AARON J. COTNOIR Christine Tappolet (2000) posed a problem for alethic pluralism: either deny the

### Announcements. CS311H: Discrete Mathematics. First Order Logic, Rules of Inference. Satisfiability, Validity in FOL. Example.

Announcements CS311H: Discrete Mathematics First Order Logic, Rules of Inference Instructor: Işıl Dillig Homework 1 is due now! Homework 2 is handed out today Homework 2 is due next Wednesday Instructor:

### INTRODUCTION TO LOGIC 1 Sets, Relations, and Arguments

INTRODUCTION TO LOGIC 1 Sets, Relations, and Arguments Volker Halbach Pure logic is the ruin of the spirit. Antoine de Saint-Exupéry The Logic Manual The Logic Manual The Logic Manual The Logic Manual

### Exposition of Symbolic Logic with Kalish-Montague derivations

An Exposition of Symbolic Logic with Kalish-Montague derivations Copyright 2006-13 by Terence Parsons all rights reserved Aug 2013 Preface The system of logic used here is essentially that of Kalish &

### Russell on Descriptions

Russell on Descriptions Bertrand Russell s analysis of descriptions is certainly one of the most famous (perhaps the most famous) theories in philosophy not just philosophy of language over the last century.

### From Necessary Truth to Necessary Existence

Prequel for Section 4.2 of Defending the Correspondence Theory Published by PJP VII, 1 From Necessary Truth to Necessary Existence Abstract I introduce new details in an argument for necessarily existing

### TWO VERSIONS OF HUME S LAW

DISCUSSION NOTE BY CAMPBELL BROWN JOURNAL OF ETHICS & SOCIAL PHILOSOPHY DISCUSSION NOTE MAY 2015 URL: WWW.JESP.ORG COPYRIGHT CAMPBELL BROWN 2015 Two Versions of Hume s Law MORAL CONCLUSIONS CANNOT VALIDLY

### Logic Dictionary Keith Burgess-Jackson 12 August 2017

Logic Dictionary Keith Burgess-Jackson 12 August 2017 addition (Add). In propositional logic, a rule of inference (i.e., an elementary valid argument form) in which (1) the conclusion is a disjunction

### What is the Nature of Logic? Judy Pelham Philosophy, York University, Canada July 16, 2013 Pan-Hellenic Logic Symposium Athens, Greece

What is the Nature of Logic? Judy Pelham Philosophy, York University, Canada July 16, 2013 Pan-Hellenic Logic Symposium Athens, Greece Outline of this Talk 1. What is the nature of logic? Some history

### Instructor s Manual 1

Instructor s Manual 1 PREFACE This instructor s manual will help instructors prepare to teach logic using the 14th edition of Irving M. Copi, Carl Cohen, and Kenneth McMahon s Introduction to Logic. The

### 10.7 Asyllogistic Inference

M10_COPI1396_13_SE_C10.QXD 10/22/07 8:42 AM Page 468 468 CHAPTER 10 Quantification Theory 8. None but the brave deserve the fair. Every soldier is brave. Therefore none but soldiers deserve the fair. (Dx:

### Kripke on the distinctness of the mind from the body

Kripke on the distinctness of the mind from the body Jeff Speaks April 13, 2005 At pp. 144 ff., Kripke turns his attention to the mind-body problem. The discussion here brings to bear many of the results

### 9 Methods of Deduction

M09_COPI1396_13_SE_C09.QXD 10/19/07 3:46 AM Page 372 9 Methods of Deduction 9.1 Formal Proof of Validity 9.2 The Elementary Valid Argument Forms 9.3 Formal Proofs of Validity Exhibited 9.4 Constructing

### 2.3. Failed proofs and counterexamples

2.3. Failed proofs and counterexamples 2.3.0. Overview Derivations can also be used to tell when a claim of entailment does not follow from the principles for conjunction. 2.3.1. When enough is enough

### Elements of Science (cont.); Conditional Statements. Phil 12: Logic and Decision Making Fall 2010 UC San Diego 9/29/2010

Elements of Science (cont.); Conditional Statements Phil 12: Logic and Decision Making Fall 2010 UC San Diego 9/29/2010 1 Why cover statements and arguments Decision making (whether in science or elsewhere)

### Logic: Deductive and Inductive by Carveth Read M.A. CHAPTER IX CHAPTER IX FORMAL CONDITIONS OF MEDIATE INFERENCE

CHAPTER IX CHAPTER IX FORMAL CONDITIONS OF MEDIATE INFERENCE Section 1. A Mediate Inference is a proposition that depends for proof upon two or more other propositions, so connected together by one or

### Constructing the World

Constructing the World Lecture 1: A Scrutable World David Chalmers Plan *1. Laplace s demon 2. Primitive concepts and the Aufbau 3. Problems for the Aufbau 4. The scrutability base 5. Applications Laplace

### Plato s Allegory of the Cave

Logic Plato s Allegory of the Cave The First Word of the Day is Troglodyte From the Greek word for cave (trōglē). The Troglodytae (Τρωγλοδῦται) or Troglodyti (literally cave goers ) are those who live

### Subjective Logic: Logic as Rational Belief Dynamics. Richard Johns Department of Philosophy, UBC

Subjective Logic: Logic as Rational Belief Dynamics Richard Johns Department of Philosophy, UBC johns@interchange.ubc.ca May 8, 2004 What I m calling Subjective Logic is a new approach to logic. Fundamentally

### 15. Russell on definite descriptions

15. Russell on definite descriptions Martín Abreu Zavaleta July 30, 2015 Russell was another top logician and philosopher of his time. Like Frege, Russell got interested in denotational expressions as

### Ayer and Quine on the a priori

Ayer and Quine on the a priori November 23, 2004 1 The problem of a priori knowledge Ayer s book is a defense of a thoroughgoing empiricism, not only about what is required for a belief to be justified

### A Solution to the Gettier Problem Keota Fields. the three traditional conditions for knowledge, have been discussed extensively in the

A Solution to the Gettier Problem Keota Fields Problem cases by Edmund Gettier 1 and others 2, intended to undermine the sufficiency of the three traditional conditions for knowledge, have been discussed

### A SOLUTION TO FORRESTER'S PARADOX OF GENTLE MURDER*

162 THE JOURNAL OF PHILOSOPHY cial or political order, without this second-order dilemma of who is to do the ordering and how. This is not to claim that A2 is a sufficient condition for solving the world's

### Basic Concepts and Skills!

Basic Concepts and Skills! Critical Thinking tests rationales,! i.e., reasons connected to conclusions by justifying or explaining principles! Why do CT?! Answer: Opinions without logical or evidential

### Inference in Cyc. Copyright 2002 Cycorp

Inference in Cyc Logical Aspects of Inference Incompleteness in Searching Incompleteness from Resource Bounds and Continuable Searches Efficiency through Heuristics Inference Features in Cyc We ll be talking

### Basic Concepts and Distinctions 1 Logic Keith Burgess-Jackson 14 August 2017

Basic Concepts and Distinctions 1 Logic Keith Burgess-Jackson 14 August 2017 Terms in boldface type are defined somewhere in this handout. 1. Logic is the science of implication, or of valid inference

### MCQ IN TRADITIONAL LOGIC. 1. Logic is the science of A) Thought. B) Beauty. C) Mind. D) Goodness

MCQ IN TRADITIONAL LOGIC FOR PRIVATE REGISTRATION TO BA PHILOSOPHY PROGRAMME 1. Logic is the science of-----------. A) Thought B) Beauty C) Mind D) Goodness 2. Aesthetics is the science of ------------.

### Exercise Sets. KS Philosophical Logic: Modality, Conditionals Vagueness. Dirk Kindermann University of Graz July 2014

Exercise Sets KS Philosophical Logic: Modality, Conditionals Vagueness Dirk Kindermann University of Graz July 2014 1 Exercise Set 1 Propositional and Predicate Logic 1. Use Definition 1.1 (Handout I Propositional

### A short introduction to formal logic

A short introduction to formal logic Dan Hicks v0.3.2, July 20, 2012 Thanks to Tim Pawl and my Fall 2011 Intro to Philosophy students for feedback on earlier versions. My approach to teaching logic has

### On Truth At Jeffrey C. King Rutgers University

On Truth At Jeffrey C. King Rutgers University I. Introduction A. At least some propositions exist contingently (Fine 1977, 1985) B. Given this, motivations for a notion of truth on which propositions

### What is the Frege/Russell Analysis of Quantification? Scott Soames

What is the Frege/Russell Analysis of Quantification? Scott Soames The Frege-Russell analysis of quantification was a fundamental advance in semantics and philosophical logic. Abstracting away from details

### Negative Facts. Negative Facts Kyle Spoor

54 Kyle Spoor Logical Atomism was a view held by many philosophers; Bertrand Russell among them. This theory held that language consists of logical parts which are simplifiable until they can no longer

### Russell and Logical Ontology. This paper focuses on an account of implication that Russell held intermittently from 1903 to

1 Russell and Logical Ontology Introduction This paper focuses on an account of implication that Russell held intermittently from 1903 to 1908. 1 On this account, logical propositions are formal truths

### Test Item File. Full file at

Test Item File 107 CHAPTER 1 Chapter 1: Basic Logical Concepts Multiple Choice 1. In which of the following subjects is reasoning outside the concern of logicians? A) science and medicine B) ethics C)

### An alternative understanding of interpretations: Incompatibility Semantics

An alternative understanding of interpretations: Incompatibility Semantics 1. In traditional (truth-theoretic) semantics, interpretations serve to specify when statements are true and when they are false.

### Argumentative Analogy versus Figurative Analogy

Argumentative Analogy versus Figurative Analogy By Timo Schmitz, Philosopher As argumentative analogy or simply analogism (ἀναλογισµός), one calls the comparison through inductive reasoning of at least

### In this section you will learn three basic aspects of logic. When you are done, you will understand the following:

Basic Principles of Deductive Logic Part One: In this section you will learn three basic aspects of logic. When you are done, you will understand the following: Mental Act Simple Apprehension Judgment

### HOW TO ANALYZE AN ARGUMENT

What does it mean to provide an argument for a statement? To provide an argument for a statement is an activity we carry out both in our everyday lives and within the sciences. We provide arguments for

### Unit. Categorical Syllogism. What is a syllogism? Types of Syllogism

Unit 8 Categorical yllogism What is a syllogism? Inference or reasoning is the process of passing from one or more propositions to another with some justification. This inference when expressed in language

### Responses to the sorites paradox

Responses to the sorites paradox phil 20229 Jeff Speaks April 21, 2008 1 Rejecting the initial premise: nihilism....................... 1 2 Rejecting one or more of the other premises....................

### Deflationary Nominalism s Commitment to Meinongianism

Res Cogitans Volume 7 Issue 1 Article 8 6-24-2016 Deflationary Nominalism s Commitment to Meinongianism Anthony Nguyen Reed College Follow this and additional works at: http://commons.pacificu.edu/rescogitans

### CRITICAL THINKING (CT) MODEL PART 1 GENERAL CONCEPTS

Fall 2001 ENGLISH 20 Professor Tanaka CRITICAL THINKING (CT) MODEL PART 1 GENERAL CONCEPTS In this first handout, I would like to simply give you the basic outlines of our critical thinking model

### Intersubstitutivity Principles and the Generalization Function of Truth. Anil Gupta University of Pittsburgh. Shawn Standefer University of Melbourne

Intersubstitutivity Principles and the Generalization Function of Truth Anil Gupta University of Pittsburgh Shawn Standefer University of Melbourne Abstract We offer a defense of one aspect of Paul Horwich

### BASIC CONCEPTS OF LOGIC

BASIC CONCEPTS OF LOGIC 1. What is Logic?...2 2. Inferences and Arguments...2 3. Deductive Logic versus Inductive Logic...5 4. Statements versus Propositions...6 5. Form versus Content...7 6. Preliminary

### Characterizing the distinction between the logical and non-logical

Aporia vol. 27 no. 1 2017 The Nature of Logical Constants Lauren Richardson Characterizing the distinction between the logical and non-logical expressions of a language proves a challenging task, and one

### Propositions as Cognitive Event Types

Propositions as Cognitive Event Types By Scott Soames USC School of Philosophy Chapter 6 New Thinking about Propositions By Jeff King, Scott Soames, Jeff Speaks Oxford University Press 1 Propositions as

### PHILOSOPHY 4360/5360 METAPHYSICS. Methods that Metaphysicians Use

PHILOSOPHY 4360/5360 METAPHYSICS Methods that Metaphysicians Use Method 1: The appeal to what one can imagine where imagining some state of affairs involves forming a vivid image of that state of affairs.

### Testing semantic sequents with truth tables

Testing semantic sequents with truth tables Marianne: Hi. I m Marianne Talbot and in this video we are going to look at testing semantic sequents with truth tables. (Slide 2) This video supplements Session

3. Negations 3.1. Not: contradicting content 3.1.0. Overview In this chapter, we direct our attention to negation, the second of the logical forms we will consider. 3.1.1. Connectives Negation is a way

### Based on the translation by E. M. Edghill, with minor emendations by Daniel Kolak.

On Interpretation By Aristotle Based on the translation by E. M. Edghill, with minor emendations by Daniel Kolak. First we must define the terms 'noun' and 'verb', then the terms 'denial' and 'affirmation',

### Lecture 6 Keynes s Concept of Probability

Lecture 6 Keynes s Concept of Probability Patrick Maher Scientific Thought II Spring 2010 John Maynard Keynes 1883: Born in Cambridge, England 1904: B.A. Cambridge University 1914 18: World War I 1919:

### Nominalism III: Austere Nominalism 1. Philosophy 125 Day 7: Overview. Nominalism IV: Austere Nominalism 2

Branden Fitelson Philosophy 125 Lecture 1 Philosophy 125 Day 7: Overview Administrative Stuff First Paper Topics and Study Questions will be announced Thursday (9/18) All section locations are now (finally!)

### PHIL 115: Philosophical Anthropology. I. Propositional Forms (in Stoic Logic) Lecture #4: Stoic Logic

HIL 115: hilosophical Anthropology Lecture #4: Stoic Logic Arguments from the Euthyphro: Meletus Argument (according to Socrates) [3a-b] Argument: Socrates is a maker of gods; so, Socrates corrupts the

### The Greatest Mistake: A Case for the Failure of Hegel s Idealism

The Greatest Mistake: A Case for the Failure of Hegel s Idealism What is a great mistake? Nietzsche once said that a great error is worth more than a multitude of trivial truths. A truly great mistake

### Deontic Logic. G. H. von Wright. Mind, New Series, Vol. 60, No (Jan., 1951), pp

Deontic Logic G. H. von Wright Mind, New Series, Vol. 60, No. 237. (Jan., 1951), pp. 1-15. Stable URL: http://links.jstor.org/sici?sici=0026-4423%28195101%292%3a60%3a237%3c1%3adl%3e2.0.co%3b2-c Mind is

### A Brief Introduction to Key Terms

1 A Brief Introduction to Key Terms 5 A Brief Introduction to Key Terms 1.1 Arguments Arguments crop up in conversations, political debates, lectures, editorials, comic strips, novels, television programs,

### Notes on Bertrand Russell s The Problems of Philosophy (Hackett 1990 reprint of the 1912 Oxford edition, Chapters XII, XIII, XIV, )

Notes on Bertrand Russell s The Problems of Philosophy (Hackett 1990 reprint of the 1912 Oxford edition, Chapters XII, XIII, XIV, 119-152) Chapter XII Truth and Falsehood [pp. 119-130] Russell begins here

### The distinction between truth-functional and non-truth-functional logical and linguistic

FORMAL CRITERIA OF NON-TRUTH-FUNCTIONALITY Dale Jacquette The Pennsylvania State University 1. Truth-Functional Meaning The distinction between truth-functional and non-truth-functional logical and linguistic

### ON THE TRUTH CONDITIONS OF INDICATIVE AND COUNTERFACTUAL CONDITIONALS Wylie Breckenridge

ON THE TRUTH CONDITIONS OF INDICATIVE AND COUNTERFACTUAL CONDITIONALS Wylie Breckenridge In this essay I will survey some theories about the truth conditions of indicative and counterfactual conditionals.

### The Problem of Major Premise in Buddhist Logic

The Problem of Major Premise in Buddhist Logic TANG Mingjun The Institute of Philosophy Shanghai Academy of Social Sciences Shanghai, P.R. China Abstract: This paper is a preliminary inquiry into the main

### The Logic of Ordinary Language

The Logic of Ordinary Language Gilbert Harman Princeton University August 11, 2000 Is there a logic of ordinary language? Not obviously. Formal or mathematical logic is like algebra or calculus, a useful

### 5.6.1 Formal validity in categorical deductive arguments

Deductive arguments are commonly used in various kinds of academic writing. In order to be able to perform a critique of deductive arguments, we will need to understand their basic structure. As will be

### Vagueness and supervaluations

Vagueness and supervaluations UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Supervaluations We saw two problems with the three-valued approach: 1. sharp boundaries 2. counterintuitive consequences

### HOW WITTGENSTEIN DEFEATED RUSSELL S MULTIPLE RELATION THEORY OF JUDGMENT

PETER W. HANKS HOW WITTGENSTEIN DEFEATED RUSSELL S MULTIPLE RELATION THEORY OF JUDGMENT ABSTRACT. In 1913 Wittgenstein raised an objection to Russell s multiple relation theory of judgment that eventually

### How Russell's Problems of Philosophy solved the impasse between Rationalism and Empiricism and made Logic the Essence of Philosophy.

How Russell's Problems of Philosophy solved the impasse between Rationalism and Empiricism and made Logic the Essence of Philosophy. Gregory Landini gregory-landini@uiowa.edu The Principia Era There is

### Todays programme. Background of the TLP. Some problems in TLP. Frege Russell. Saying and showing. Sense and nonsense Logic The limits of language

Todays programme Background of the TLP Frege Russell Some problems in TLP Saying and showing Sense and nonsense Logic The limits of language 1 TLP, preface How far my efforts agree with those of other

### Philosophical Arguments

Philosophical Arguments An introduction to logic and philosophical reasoning. Nathan D. Smith, PhD. Houston Community College Nathan D. Smith. Some rights reserved You are free to copy this book, to distribute

### Russellianism and Explanation. David Braun. University of Rochester

Forthcoming in Philosophical Perspectives 15 (2001) Russellianism and Explanation David Braun University of Rochester Russellianism is a semantic theory that entails that sentences (1) and (2) express

### Ramsey s belief > action > truth theory.

Ramsey s belief > action > truth theory. Monika Gruber University of Vienna 11.06.2016 Monika Gruber (University of Vienna) Ramsey s belief > action > truth theory. 11.06.2016 1 / 30 1 Truth and Probability

### Vague objects with sharp boundaries

Vague objects with sharp boundaries JIRI BENOVSKY 1. In this article I shall consider two seemingly contradictory claims: first, the claim that everybody who thinks that there are ordinary objects has

### What is Direction of Fit?

What is Direction of Fit? AVERY ARCHER ABSTRACT: I argue that the concept of direction of fit is best seen as picking out a certain logical property of a psychological attitude: namely, the fact that it

### Immanuel Kant, Analytic and Synthetic. Prolegomena to Any Future Metaphysics Preface and Preamble

+ Immanuel Kant, Analytic and Synthetic Prolegomena to Any Future Metaphysics Preface and Preamble + Innate vs. a priori n Philosophers today usually distinguish psychological from epistemological questions.

### PHILOSOPHY 102 INTRODUCTION TO LOGIC PRACTICE EXAM 1. W# Section (10 or 11) 4. T F The statements that compose a disjunction are called conjuncts.

PHILOSOPHY 102 INTRODUCTION TO LOGIC PRACTICE EXAM 1 W# Section (10 or 11) 1. True or False (5 points) Directions: Circle the letter next to the best answer. 1. T F All true statements are valid. 2. T

### On Interpretation. Section 1. Aristotle Translated by E. M. Edghill. Part 1

On Interpretation Aristotle Translated by E. M. Edghill Section 1 Part 1 First we must define the terms noun and verb, then the terms denial and affirmation, then proposition and sentence. Spoken words

### I. Claim: a concise summary, stated or implied, of an argument s main idea, or point. Many arguments will present multiple claims.

Basics of Argument and Rhetoric Although arguing, speaking our minds, and getting our points across are common activities for most of us, applying specific terminology to these activities may not seem

### Selections from Aristotle s Prior Analytics 41a21 41b5

Lesson Seventeen The Conditional Syllogism Selections from Aristotle s Prior Analytics 41a21 41b5 It is clear then that the ostensive syllogisms are effected by means of the aforesaid figures; these considerations

### Alice E. Fischer. CSCI 1166 Discrete Mathematics for Computing February, 2018

Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February, 2018 Alice E. Fischer... 1/28 1 Examples and Varieties Order of Quantifiers and Negations 2 3 Universal Existential 4 Universal Modus

### 2016 Philosophy. Higher. Finalised Marking Instructions

National Qualifications 06 06 Philosophy Higher Finalised Marking Instructions Scottish Qualifications Authority 06 The information in this publication may be reproduced to support SQA qualifications only

### Hume on Ideas, Impressions, and Knowledge

Hume on Ideas, Impressions, and Knowledge in class. Let my try one more time to make clear the ideas we discussed today Ideas and Impressions First off, Hume, like Descartes, Locke, and Berkeley, believes

### The Principle of Sufficient Reason and Free Will

Stance Volume 3 April 2010 The Principle of Sufficient Reason and Free Will ABSTRACT: I examine Leibniz s version of the Principle of Sufficient Reason with respect to free will, paying particular attention

### TRUTH VIRTUAL ISSUE NO. 1. Tr u t h MICHAEL DUMMETT

TRUTH VIRTUAL ISSUE NO. 1 Tr u t h MICHAEL DUMMETT PROCEEDINGS OF THE ARISTOTELIAN SOCIETY THE VIRTUAL ISSUE NO. I 2013 Featuring classic papers from the archive & commentaries by contemporary philosophers

### Logic is the study of the quality of arguments. An argument consists of a set of

Logic: Inductive Logic is the study of the quality of arguments. An argument consists of a set of premises and a conclusion. The quality of an argument depends on at least two factors: the truth of the

### WHAT IS HUME S FORK? Certainty does not exist in science.

WHAT IS HUME S FORK? www.prshockley.org Certainty does not exist in science. I. Introduction: A. Hume divides all objects of human reason into two different kinds: Relation of Ideas & Matters of Fact.

Potentialism about set theory Øystein Linnebo University of Oslo SotFoM III, 21 23 September 2015 Øystein Linnebo (University of Oslo) Potentialism about set theory 21 23 September 2015 1 / 23 Open-endedness

### Wittgenstein s Logical Atomism. Seminar 8 PHIL2120 Topics in Analytic Philosophy 16 November 2012

Wittgenstein s Logical Atomism Seminar 8 PHIL2120 Topics in Analytic Philosophy 16 November 2012 1 Admin Required reading for this seminar: Soames, Ch 9+10 New Schedule: 23 November: The Tractarian Test