# Unit. Categorical Syllogism. What is a syllogism? Types of Syllogism

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Unit 8 Categorical yllogism What is a syllogism? Inference or reasoning is the process of passing from one or more propositions to another with some justification. This inference when expressed in language is called an argument. An argument consists of more than one proposition (premise and conclusion). The conclusion of an argument is the proposition that is affirmed on the basis of the other propositions of the argument. These other propositions which provide support or ground for the conclusion are called premises of the argument. Inferences have been broadly divided as deductive and inductive. A deductive argument makes the claim that its conclusion is supported by its premises conclusively. An inductive argument, in contrast, does not make such a claim. It claims to support its conclusion only with some degrees of probability. Deductive inferences are again divided into Immediate and ediate. Immediate inference is a kind of deductive inference in which the conclusion follows from one premise only. In mediate inference, on the other hand, the conclusion follows from more them one premise. Where there are only two premises, and the conclusion follows from them jointly, it is called syllogism. A syllogism is a deductive argument in which a conclusion is inferred from two premises. The syllogisms with which we are concerned here are called categorical because they are arguments based on the categorical relations of classes or categories. uch relations are of three kinds. 1. The whole of one class may be included in the other class such as All dogs are mammals. 2. ome members of one class may be included in the other such as ome chess players are females. 3. Two classes may not have anything in common such as No man is perfect. A categorical syllogism, thus, can be defined as a deductive argument consisting of three categorical propositions that together contain exactly three terms each of which occurs twice only. Types of yllogism Before discussing the structure and rules of a valid syllogism, it is necessary to distinguish categorical 85

2 syllogism from various other kinds of syllogism. These different kinds of syllogism can be shown by the following table:- yllogism Categorical Compound Hypothetical Disjunctive ixed Pure (Table - 1) In a categorical syllogism all propositions (both the premises and conclusion) are categorical propositions that is A, E, I and O. For example : All men are mortal All players are men Therefore, all players are mortal In a compound syllogism one premise or both the premises and conclusion are compound propositions. If it rains in time, then the crops will be good. If crops is good, inflation will be controlled. Therefore, if it rains in time, then inflation will be controlled. (i) In mixed hypothetical syllogism, the major premise is hypothetical, the minor premise is categorical and the conclusion is also categorical. We have two forms of this kind of syllogism known as odus Ponens and odus Tollens. These two kinds can be understood by the following examples: (i) If you work hard then you will pass. You are working hard. Therefore, you will pass. This is an example of odus Ponens where by affirming the antecedent we can affirm the consequent. 86

3 ymbolically, we can express it as:- p q p q (ii) If the car runs, then there is fuel in its tank. There is no fuel in its tank Therefore, the car does not run. The above is an example of odus Tollens in which by denying the consequent, the antecedent is denied. ymbolically, we can express it as:- p q ~ q ~ p In pure hypothetical syllogism all the premises and conclusion are hypothetical propositions. For example : If there is scandal, then C will resign If C resigns, then there will be mid-term election Therefore, if there is scandal, then there will be mid-term election. The other kind of compound syllogism is called disjunctive categorical. In this kind of syllogism the major premise is disjunctive, the minor is categorical and the conclusion is also categorical. The simple rule for disjunction is that by denying one of the disjuncts, we can affirm the other one. It is based on the fact that both the disjuncts cannot be false together. o, if we deny one disjunct, we can thereby affirm the other one but not the other way round. ymbolically, one can express it as : Either p or q p v q not p ~ p q After discussing the various kinds of syllogism, now we can turn to the structure of categorical syllogism. 87

4 tructure of yllogism A syllogism consists of three propositions of which two given propositions are called premises and the third proposition (which is inferred from the given propositions) is called conclusion. Each proposition consists of two terms. Therefore, a syllogism must consist of three terms and each one occurs twice. For example: All self- confident persons are mentally strong. No coward is mentally strong. Therefore, no coward is self- confident person The three categorical propositions in the above example contain exactly three terms that is selfconfident person mentally strong and coward. To identify the terms by name we look at the conclusion. The predicate of the conclusion is called the major term. The subject of the conclusion is called the minor term. The term which occurs in both the premises but not in the conclusion is called the middle term. In the above example, the term 'self-confident' person is the major term 'coward' is the minor term and 'mentally strong' is the middle term. The premises of a syllogism also have names. Each premise is named after the term that appears in it. The premise that contains the major term is called the major premise. In the example 'self-confident person' is the major term, so the premise "All self-confident persons are mentally strong" is the major premise. The premise containing the minor term is called the minor premise. In the example, 'coward' is the minor term so "No coward is mentally strong" is the minor premise. It is the minor premise not because of its position but because it is the premise that contains the minor term. A syllogism is said to be in standard form when its premises are arranged in a specified standard order. In a standard form of syllogism, the major premise is always stated first, the minor premise is second and the conclusion is last. It may be noted that in the accepted usage the symbol stands for the middle term, stands for the minor term and P stands for the major term. Now, we can discuss the mood and the figure of a syllogism. ood of yllogism The mood of a syllogism is determined by the quantity and the quality of its constituent propositions or by the types of (A,E,I,O) standard form categorical propositions it contains. The mood of the syllogism is represented by three letters given in standard form order. The first letter represents the type of major premise, the second letter is for the minor premise and the last letter is for the conclusion. 88

5 A I I All artists are egoists. (ajor premise) ome artists are pampers. (inor premise) Therefore, some pampers are egoists. (Conclusion) Figure of yllogism The mood of a standard form syllogism is not enough by itself to characterize its logical form. The syllogisms having the same mood may differ significantly in their forms depending on the relative positions of their middle terms. To know the form of a syllogism, we must state its mood and its figure. The figure of a syllogism is determined by the position of the middle term in its premises. The middle term occurs in both the major and the minor premises but the position of the middle term is not the same in all syllogisms. There are four possible arrangements of the middle term in the two premises and, thus, there are four figures of a syllogism:- First Figure In the first figure, the middle term is the subject of the major premise and predicate of the minor premise. Thus, I Figure P econd Figure In the second Figure, the middle term is the predicate in both the premises. Thus, II Figure P Third Figure In the third figure, the middle term is the subject in both the premises. Thus, III Figure P 89

6 Fourth Figure In the fourth figure, the middle term is the predicate in the major premise and subject in the minor premise. It is exactly the opposite of the first figure. Thus, IV Figure P Any standard form categorical syllogism is described completely when we specify its mood and its figure. If we take an example, we can understand it better. For example, in the following syllogism:- E No heroes are cowards. I ome soldiers are cowards. O Therefore, some soldiers are not heroes. This syllogism is in the second figure where 'cowards', the middle term, is the predicate in both the premises. Its mood is EIO. It is completely described as a syllogism of the form EIO-2 Now we have to determine the conditions under which an argument is valid. To avoid common errors, the logicians have set forth certain rules. By observing these rules we can avoid the errors commonly made in such arguments. These rules also help in evaluating standard form syllogisms by observing whether any one of these rules has been violated. We commit a mistake if we violate any one of these rules. uch mistakes are called fallacies. ince these mistakes are there in the form of the arguments, we call them formal fallacies. Now we shall understand the five rules to test the validity of syllogistic arguments. Rules and Fallacies of yllogism 1 Every syllogism must contain three and only three terms, each of which is used in the same sense throughout the arguments. Any violation of this rule leads to the fallacy of four terms. For example No man is made of paper All pages are men Therefore, no pages are made of paper. 90

7 The above argument commits the fallacy of four terms by using one term (minor term) in two different senses. The term 'page' means 'boy servant' in the minor premise while in the conclusions it means pages of a book' In fact, the definition of categorical syllogism, by itself, indicates that by its nature every syllogism must have three and exactly three terms only. 2 According to this rule, the middle term must be distributed at least once in the premises. Otherwise, the connection required by the conclusion cannot be made. For example as in AAA - 2: All virtuous persons are happy. All rich men are happy. Therefore, all rich men are virtuous. The above arguments violates rule no.2 because the middle term 'happy' is not distributed even once in the premises. Hence, it commits the fallacy of undistributed middle. There is a need to link the minor and the major terms. If they are to be linked by the middle term, either the major or the minor term must be related to the whole class designated by the middle term. If it is not so then both the major and minor terms in the conclusion may be connected to different parts of middle term and thus will not be necessarily connected with each other. 3 The third rule again deals with the distribution of terms. According to this rule, no term can be distributed in the conclusion unless it is also distributed in the premise. This rule is based on the fundamental rule of deduction that the conclusion cannot be more general than the premises. It cannot say more than what is said in the premises. We know that a term is distributed when it is taken in its entire denotation. Hence, if a term is distributed in the conclusion without being distributed in the premises, it will say more than what is said in the premises. The premises, thus, will not entail the conclusion or the conclusion will go beyond its premises. The violation of this rule leads to the fallacy of illicit process. There are two different forms of illicit process. If the major term is distributed in the conclusion without being distributed in its premise, the fallacy committed is called the fallacy of illicit major. For example in the following syllogism AEE-1: All rational agents are accountable. No animals are rational agents. Therefore, no animals are accountable. Here, in this argument, the major term 'accountable' is distributed in the conclusion without being distributed in the premise. This leads to the fallacy of 'illicit major.' imilarly, if the minor 91

8 term is distributed in the conclusion without being distributed in its premise, we commit the fallacy of 'illicit minor' as is apparent in the following AAA-3: All men are mortal. All men are rational. Therefore, all rational beings are mortal. Here, in this argument, the minor term 'rational being' is distributed in the conclusion without being distributed in the premise. This leads to the fallacy of illicit minor. Hence we can say that in both kinds of such fallacies, the conclusion goes illicitly beyond what the premises say. 4 The fourth rule says that from two negative premises no conclusion follows. A negative proposition states that the predicate is denied of the subject. If both premises are negative that means there is exclusion of both extremes from the middle term, no connection between the extremes would be established. This rule follows from the same consideration as rule 2 about distribution of the middle term. Both the premises should refer to the same part of the middle term, either by inclusion in both cases or by inclusion in one case and exclusion in the other. Then only middle term can connect major term with minor term. A violation of this rule leads to the fallacy of exclusive premises. For example OEO in any figure, commits this fallacy. 5 The fifth rule states that if one premise is negative, the conclusion must be negative. It also states that if the conclusion is negative one premise must be negative. A violation of this rule leads to the fallacy of drawing an affirmative conclusion from a negative premise. For example, AEA in any figure has this fallacy. The above five rules are supposed to apply to all the standard form categorical syllogisms. They are adequately sufficient to test the validity of any argument. If an argument conforms to all these five rules, it is valid, otherwise invalid. These rules are based on quantity of propositions, distribution of terms (Rule No. 2 and 3) and quality of propositions. (Rule No. 4 and 5).In addition to these general rules there are certain corollaries which are applicable to all categorical syllogisms irrespective of their figures. Corollaries 1 From two particular premises no conclusion follows: This rule may be explained as: If both the premises are particular then the possible combinations are II, IO, OI and OO. Now we can examine them one by one. 92

9 II - If both the premises are II then no terms will be distributed then the result will be violation of rule no. 2 because the middle term will remain undistributed. This will lead to the fallacy of undistributed middle. OO - If both the premises are OO then both the premises will be negative. This will be violation of rule no. 4 according to which both the premises cannot be negative. It will lead to the fallacy of exclusive premises. OI&IO - In these two combinations, only one term will be distributed, the predicate of O proposition. ince one premises is negative the conclusion will also be negative. Being a negative conclusion it must distribute its predicate, i.e., the major term. According to rule no. 3 this major term should also be distributed in its premise to avoid the fallacy of illicit major. In the two premises, only one term is distributed. Hence, in attempting to draw a conclusion, we either commit the fallacy of illicit major or the fallacy of undistributed middle. Thus, two particular premises yield no valid conclusion. 2. If one premise is particular the conclusion must be particular This corollary can be understood by taking into consideration the wider rule of deduction which says that the conclusion must be implied by the premises. In other words the conclusion cannot be more general than the promises. Hence, if one premise is particular the conclusion has to be particular or violation of some rules of syllogism will make the argument fallacious. 3. If both premises are affirmative, the conclusion must be affirmative and vice-versa, if the conclusion be affirmative, both the premises must be affirmative If both the premises be affirmative it means that the middle term has a connection with both the major and the minor them. From this, if we have to have a valid syllogism then in the conclusion the major them and the minor them must have some connection with each other i.e., the conclusion must be affirmative. 4. From a particular major and a negative minor no conclusion follows: If the minor premise be negative, the major premise must be affirmative and the conclusion must be negative as per rules. The conclusion being negative, it will distribute its predicate i.e. the major term but the major premises being a particular affirmative does not distribute any term. Hence, all this will lead to the violation of rule no. 3 which clearly states that no term con be distributed in the conclusion unless it is also distributed in the premises. The result will be that we shall commit the fallacy of illicit major in our attempt to draw conclusion. 93

10 pecial Rules of the first figure 1. The major premise must be universal : I figure:- P If the major premise is not universal, it must be particular. If it is particular then the middle term is not distributed there because the middle term is the subject of the major premise. According to rules, the middle term must be distributed at least once in the premises. o, if not in the major premise, the middle term must be distributed in the minor premise. In the first figure the middle term is the predicate in the minor premise. To distribute the middle term the minor premise must be negative because only negative propositions distribute their predicate. Now, if the minor premise is negative the major must be affirmative and the conclusion negative. We assumed in the beginning that the major premise is particular and now we know that it is affirmative. The major term which is distributed in the conclusion (which is negative) will not be distributed in the major premise which is particular affirmative, i.e., I proposition. Thus, our assumption that the major premise is particular leads to the fallacy of 'illicit major'. Thus, we prove that the major premise cannot be particular, it must be universal 2. The minor premise must be affirmative: If the minor premise is not affirmative then it must be negative. It the minor premise is negative, the major must be affirmative and the conclusion negative. The conclusion being negative will distribute its predicate, i.e., the major term. The major term in the major premise is the predicate which being affirmative will not distribute its major term. Thus, if we assume the minor premise as negative we commit the fallacy of illicit major. The minor premise, therefore, must be affirmative. pecial Rules of the second figure 1. The major premise must be universal : II figure: - P If the major premise is not universal, it must be particular and being particular, it will not distribute its subject which is the major term in the second figure. ince the major term is 94

11 undistributed in the major premise, it should not be distributed in the conclusion to avoid the fallacy of illicit major. In that case, the conclusion must be affirmative because only affirmative propositions do not distribute their predicate. Now, if the conclusion is affirmative, both the premises should also be affirmative. If it is so, the middle term will remain undistributed in both the premises because in the second figure, the middle term is the predicate in both the premises and affirmative propositions do not distribute their predicate. This will lead to the fallacy of undistributed middle. Hence, the major premise must be universal, it cannot be particular. 2. One of the premises must be negative : In the second figure, the middle term is the predicate in both the premises. It is only negative propositions which distribute their predicate. ince the middle term must be distributed at least once in the premises, one of the premises must be negative to avoid the fallacy of undistributed middle. pecial Rules of the third figure 1. The minor premise must be affirmative : III figure:- P If the minor premise is not affirmative, it must be negative and then the major premise must be affirmative and the conclusion negative. The conclusion being negative it will distribute its predicate, i.e., the major term. This major term should also be distributed in the major premise to avoid the fallacy of illicit major. The major term in the major premise is its predicate which being affirmative does not distribute its predicate, i.e., the major term. This is violation of rule no. 3 leading to the fallacy of illicit major. Hence, the minor premise must be affirmative in the third figure. 2. The conclusion must be particular: In the third figure, the minor term is the predicate in the minor premise. As proved in the last special rule, this minor premise must be affirmative. If the minor premise is affirmative, it will not distribute its predicate, i.e., the minor term. This minor term should also be undistributed in the conclusion to avoid the fallacy of illicit minor. The minor term is the subject of the conclusion and will remain undistributed only if the conclusion is particular because universal propositions distribute their subject. The conclusion, thus, must be particular, or, we commit the fallacy of illicit minor. 95

12 pecial Rules of the fourth figure IV figure:- P 1. If the major premise be affirmative, the minor premise must be universal. In the fourth figure, the middle term is the predicate in the major premise and if this premise is affirmative, the middle term will remain undistributed in the major premise. In the minor premise, the middle term is its subject and since only universal propositions distribute their subject so the minor premise must be universal to get the middle term distributed and thus avoid the fallacy of undistributed middle. 2. If the minor premise be affirmative the conclusion must be particular. In the fourth figure, the minor term is the predicate in the minor premise. If the minor premise be affirmative, the minor term being its predicate will remain undistributed in the premise and therefore cannot be distributed in the conclusion. The minor term being the subject of the conclusion will be undistributed only if the conclusion is particular because universal propositions must distribute their subject. Therefore, if the minor premise is affirmative, the conclusion must be particular, or, we commit the fallacy of illicit minor. 3. If either premise be negative, the major premise must be universal. If either premise be negative, the conclusion will also be negative; distributing at least its predicate i.e. the major term this major term should also be distributed in the major premise to avoid the fallacy of illicit major. In the fourth figure, the major term is the subject in the major premise and can be distributed only if the major premise is universal. Hence, if either premise is negative in the fourth figure, the major premise must be universal. Questions 1. Test the validity/ invalidity of the following syllogistic forms with the help five rules: a. IAA - 3 b. IEO - 1 c. AAA- 2 d. OEO - 4 e. AAE - 1 f. EAA - 2 g. EEE - 3 h. IAO - 2 i. AEE -2 j. OAI

13 olution: - Example: AAA-2 P P All P is All is All In the second figure the middle term is the predicate in both the premises. Affirmative propositions do not distribute their predicate. o the middle term remains undistributed in both the premises. This is violation of Rule no. 2 according to which the middle term must be distributed at least once in the premises. This leads to the fallacy of undistributed middle. 2. Arrange the following syllogisms into standard form and name figures and moods. a. All musicians are talented people and no musicians are cruel, obviously no talented people are cruel. b. ome philosophers are mathematicians; hence some scientists are philosophers, since all scientists are mathematicians. c. ome mammals are not horses, for no horses are centaurs, and all centaurs are mammals. d. No criminals are pioneers, for criminals are unsavory person and no pioneers are unsavory persons. e. ome women are not strong persons, because all mothers are strong persons but some women are not mothers. Example : All supporters of popular government are democrats, so all supporters of popular government are opponents of the Republican party, since all democrats are opponents of the Republican party. To arrange this syllogism in standard form, we must first recognize the conclusion which will give us the major and the minor terms. This will help us in identifying the major premise and the minor premise. When all this is arranged, we shall know the mood and the figure of this syllogism. All democrats are opponents of the Republican Party. (ajor premise) All supporters of popular government are democrats. (ajor premise) Therefore, all supporters of popular government are opponents of the Republican Party. (Conclusion) Now, it is clear that the above argument is in Ist figure with AAA mood, i.e., AAA-I. 3. Determine the validity/invalidity of the following arguments by using the rules of syllogism: a. ome cobras are not dangerous animals, but all cobras are snakes, therefore, some dangerous animals are not snakes. b. ome writers are artists because all artists are sensitive people and some writers are sensitive people. 97

14 c. ome successful men are not Americans, because all Americans are rich, and some rich man are not successful. d. ome philosophers are reformers, so some idealists are reformers since all philosophers are idealists. e. All proteins are organic compounds; hence all enzymes are proteins, as all enzymes are organic compounds. Example : No coal-tar derivatives are nourishing foods, because all artificial dyes are coal-tar derivates, and no artificial dyes are nourishing foods. When we arrange this argument in standard form, we get the following: No artificial dyes are nourishing foods. All artificial dyes are coal-tar derivatives. Therefore, no coal-tar derivates are nourishing foods. This argument is in the form of EAE-3. When we look at the conclusion, the minor term is distributed there but the same term is not distributed in the minor premise, being the predicate of A proposition. This is in violation of Rule no. 3 according to which no term can be distributed in the conclusion unless it is also distributed in the premise. Hence, this argument is invalid committing the fallacy of illicit minor. Note : There are certain words which are conclusion indicators such as therefore, hence, so, it follows, consequently, thus, it is implied by etc. There are certain words which are premise indicators like, since, for, because etc. 4. Define syllogism as a form of an argument. Explain different types of syllogism. 5. Write a note on the structure of categorical syllogism. Define and illustrate mood and figure of categorical syllogism. 6. Explain with examples the fallacies of undistributed middle, illicit major and illicit minor. 7. Explain fallacy of four terms. 8. Prove why: a. A valid categorical syllogism cannot have two particular premises. b. From a particular major premise and a negative minor premise no conclusion follows in a valid categorical syllogism. 10. Prove special rules of 1st and 2nd figures. 98

### 6.5 Exposition of the Fifteen Valid Forms of the Categorical Syllogism

M06_COPI1396_13_SE_C06.QXD 10/16/07 9:17 PM Page 255 6.5 Exposition of the Fifteen Valid Forms of the Categorical Syllogism 255 7. All supporters of popular government are democrats, so all supporters

### MCQ IN TRADITIONAL LOGIC. 1. Logic is the science of A) Thought. B) Beauty. C) Mind. D) Goodness

MCQ IN TRADITIONAL LOGIC FOR PRIVATE REGISTRATION TO BA PHILOSOPHY PROGRAMME 1. Logic is the science of-----------. A) Thought B) Beauty C) Mind D) Goodness 2. Aesthetics is the science of ------------.

### Logic: Deductive and Inductive by Carveth Read M.A. CHAPTER IX CHAPTER IX FORMAL CONDITIONS OF MEDIATE INFERENCE

CHAPTER IX CHAPTER IX FORMAL CONDITIONS OF MEDIATE INFERENCE Section 1. A Mediate Inference is a proposition that depends for proof upon two or more other propositions, so connected together by one or

### Categorical Logic Handout Logic: Spring Sound: Any valid argument with true premises.

Categorical Logic Handout Logic: Spring 2017 Deductive argument: An argument whose premises are claimed to provide conclusive grounds for the truth of its conclusion. Validity: A characteristic of any

### What is a logical argument? What is deductive reasoning? Fundamentals of Academic Writing

What is a logical argument? What is deductive reasoning? Fundamentals of Academic Writing Logical relations Deductive logic Claims to provide conclusive support for the truth of a conclusion Inductive

### Selections from Aristotle s Prior Analytics 41a21 41b5

Lesson Seventeen The Conditional Syllogism Selections from Aristotle s Prior Analytics 41a21 41b5 It is clear then that the ostensive syllogisms are effected by means of the aforesaid figures; these considerations

### Unit 4. Reason as a way of knowing. Tuesday, March 4, 14

Unit 4 Reason as a way of knowing I. Reasoning At its core, reasoning is using what is known as building blocks to create new knowledge I use the words logic and reasoning interchangeably. Technically,

### Unit 7.3. Contraries E. Contradictories. Sub-contraries

What is opposition of Unit 7.3 Square of Opposition Four categorical propositions A, E, I and O are related and at the same time different from each other. The relation among them is explained by a diagram

What is an argument? PHIL 110 Lecture on Chapter 3 of How to think about weird things An argument is a collection of two or more claims, one of which is the conclusion and the rest of which are the premises.

### Chapter 1. Introduction. 1.1 Deductive and Plausible Reasoning Strong Syllogism

Contents 1 Introduction 3 1.1 Deductive and Plausible Reasoning................... 3 1.1.1 Strong Syllogism......................... 3 1.1.2 Weak Syllogism.......................... 4 1.1.3 Transitivity

### Chapter 8 - Sentential Truth Tables and Argument Forms

Logic: A Brief Introduction Ronald L. Hall Stetson University Chapter 8 - Sentential ruth ables and Argument orms 8.1 Introduction he truth-value of a given truth-functional compound proposition depends

### HOW TO ANALYZE AN ARGUMENT

What does it mean to provide an argument for a statement? To provide an argument for a statement is an activity we carry out both in our everyday lives and within the sciences. We provide arguments for

### PHILOSOPHY 102 INTRODUCTION TO LOGIC PRACTICE EXAM 1. W# Section (10 or 11) 4. T F The statements that compose a disjunction are called conjuncts.

PHILOSOPHY 102 INTRODUCTION TO LOGIC PRACTICE EXAM 1 W# Section (10 or 11) 1. True or False (5 points) Directions: Circle the letter next to the best answer. 1. T F All true statements are valid. 2. T

### Venn Diagrams and Categorical Syllogisms. Unit 5

Venn Diagrams and Categorical Syllogisms Unit 5 John Venn 1834 1923 English logician and philosopher noted for introducing the Venn diagram Used in set theory, probability, logic, statistics, and computer

### Logic: A Brief Introduction. Ronald L. Hall, Stetson University

Logic: A Brief Introduction Ronald L. Hall, Stetson University 2012 CONTENTS Part I Critical Thinking Chapter 1 Basic Training 1.1 Introduction 1.2 Logic, Propositions and Arguments 1.3 Deduction and Induction

### Tutorial A03: Patterns of Valid Arguments By: Jonathan Chan

A03.1 Introduction Tutorial A03: Patterns of Valid Arguments By: With valid arguments, it is impossible to have a false conclusion if the premises are all true. Obviously valid arguments play a very important

### Revisiting the Socrates Example

Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments Rules of Inference for Quantified Statements Building Arguments for Quantified

### 1. To arrive at the truth we have to reason correctly. 2. Logic is the study of correct reasoning. B. DEDUCTIVE AND INDUCTIVE ARGUMENTS

I. LOGIC AND ARGUMENTATION 1 A. LOGIC 1. To arrive at the truth we have to reason correctly. 2. Logic is the study of correct reasoning. 3. It doesn t attempt to determine how people in fact reason. 4.

### 5.6.1 Formal validity in categorical deductive arguments

Deductive arguments are commonly used in various kinds of academic writing. In order to be able to perform a critique of deductive arguments, we will need to understand their basic structure. As will be

### Part II: How to Evaluate Deductive Arguments

Part II: How to Evaluate Deductive Arguments Week 4: Propositional Logic and Truth Tables Lecture 4.1: Introduction to deductive logic Deductive arguments = presented as being valid, and successful only

### Practice Test Three Fall True or False True = A, False = B

Practice Test Three Fall 2015 True or False True = A, False = B 1. The inclusive "or" means "A or B or both A and B." 2. The conclusion contains both the major term and the middle term. 3. "If, then" statements

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Draw a Venn diagram for the given sets. In words, explain why you drew one set as a subset of

### Relevance. Premises are relevant to the conclusion when the truth of the premises provide some evidence that the conclusion is true

Relevance Premises are relevant to the conclusion when the truth of the premises provide some evidence that the conclusion is true Premises are irrelevant when they do not 1 Non Sequitur Latin for it does

### Section 3.5. Symbolic Arguments. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 3.5 Symbolic Arguments What You Will Learn Symbolic arguments Standard forms of arguments 3.5-2 Symbolic Arguments A symbolic argument consists of a set of premises and a conclusion. It is called

### Phil 3304 Introduction to Logic Dr. David Naugle. Identifying Arguments i

Phil 3304 Introduction to Logic Dr. David Naugle Identifying Arguments Dallas Baptist University Introduction Identifying Arguments i Any kid who has played with tinker toys and Lincoln logs knows that

### Identify the subject and predicate terms in, and name the form of, each of the following propositions.

M05_COPI1396_13_SE_C05.QXD 10/12/07 9:00 PM Page 187 5.4 Quality, Quantity, and Distribution 187 EXERCISES Identify the subject and predicate terms in, and name the form of, each of the following propositions.

### Logic: A Brief Introduction

Logic: A Brief Introduction Ronald L. Hall, Stetson University PART III - Symbolic Logic Chapter 7 - Sentential Propositions 7.1 Introduction What has been made abundantly clear in the previous discussion

### Chapter 9- Sentential Proofs

Logic: A Brief Introduction Ronald L. Hall, Stetson University Chapter 9- Sentential roofs 9.1 Introduction So far we have introduced three ways of assessing the validity of truth-functional arguments.

### A short introduction to formal logic

A short introduction to formal logic Dan Hicks v0.3.2, July 20, 2012 Thanks to Tim Pawl and my Fall 2011 Intro to Philosophy students for feedback on earlier versions. My approach to teaching logic has

### An alternative understanding of interpretations: Incompatibility Semantics

An alternative understanding of interpretations: Incompatibility Semantics 1. In traditional (truth-theoretic) semantics, interpretations serve to specify when statements are true and when they are false.

### Logic, reasoning and fallacies. Example 0: valid reasoning. Decide how to make a random choice. Valid reasoning. Random choice of X, Y, Z, n

Logic, reasoning and fallacies and some puzzling Before we start Introductory Examples Karst Koymans Informatics Institute University of Amsterdam (version 16.3, 2016/11/21 12:58:26) Wednesday, November

### Logic Dictionary Keith Burgess-Jackson 12 August 2017

Logic Dictionary Keith Burgess-Jackson 12 August 2017 addition (Add). In propositional logic, a rule of inference (i.e., an elementary valid argument form) in which (1) the conclusion is a disjunction

### Philosophical Arguments

Philosophical Arguments An introduction to logic and philosophical reasoning. Nathan D. Smith, PhD. Houston Community College Nathan D. Smith. Some rights reserved You are free to copy this book, to distribute

### (3) The middle term must be distributed at least once in the premisses.

CHAPTER XI. Of the Generad Rules of Syllogism. Section 582. We now proceed to lay down certain general rules to which all valid syllogisms must conform. These are divided into primary and derivative. I.

### A. Problem set #3 it has been posted and is due Tuesday, 15 November

Lecture 9: Propositional Logic I Philosophy 130 1 & 3 November 2016 O Rourke & Gibson I. Administrative A. Problem set #3 it has been posted and is due Tuesday, 15 November B. I am working on the group

### What is the Nature of Logic? Judy Pelham Philosophy, York University, Canada July 16, 2013 Pan-Hellenic Logic Symposium Athens, Greece

What is the Nature of Logic? Judy Pelham Philosophy, York University, Canada July 16, 2013 Pan-Hellenic Logic Symposium Athens, Greece Outline of this Talk 1. What is the nature of logic? Some history

### Unit 4. Reason as a way of knowing

Unit 4 Reason as a way of knowing Zendo The Master will present two Koans - one that follows the rule and one that does not. Teams will take turns presenting their own koans to the master to see if they

### PHIL 115: Philosophical Anthropology. I. Propositional Forms (in Stoic Logic) Lecture #4: Stoic Logic

HIL 115: hilosophical Anthropology Lecture #4: Stoic Logic Arguments from the Euthyphro: Meletus Argument (according to Socrates) [3a-b] Argument: Socrates is a maker of gods; so, Socrates corrupts the

### A BRIEF INTRODUCTION TO LOGIC FOR METAPHYSICIANS

A BRIEF INTRODUCTION TO LOGIC FOR METAPHYSICIANS 0. Logic, Probability, and Formal Structure Logic is often divided into two distinct areas, inductive logic and deductive logic. Inductive logic is concerned

### A Solution to the Gettier Problem Keota Fields. the three traditional conditions for knowledge, have been discussed extensively in the

A Solution to the Gettier Problem Keota Fields Problem cases by Edmund Gettier 1 and others 2, intended to undermine the sufficiency of the three traditional conditions for knowledge, have been discussed

### The Problem of Major Premise in Buddhist Logic

The Problem of Major Premise in Buddhist Logic TANG Mingjun The Institute of Philosophy Shanghai Academy of Social Sciences Shanghai, P.R. China Abstract: This paper is a preliminary inquiry into the main

### Three Kinds of Arguments

Chapter 27 Three Kinds of Arguments Arguments in general We ve been focusing on Moleculan-analyzable arguments for several chapters, but now we want to take a step back and look at the big picture, at

### BASIC CONCEPTS OF LOGIC

BASIC CONCEPTS OF LOGIC 1. What is Logic?...2 2. Inferences and Arguments...2 3. Deductive Logic versus Inductive Logic...5 4. Statements versus Propositions...6 5. Form versus Content...7 6. Preliminary

### Instructor s Manual 1

Instructor s Manual 1 PREFACE This instructor s manual will help instructors prepare to teach logic using the 14th edition of Irving M. Copi, Carl Cohen, and Kenneth McMahon s Introduction to Logic. The

### In this section you will learn three basic aspects of logic. When you are done, you will understand the following:

Basic Principles of Deductive Logic Part One: In this section you will learn three basic aspects of logic. When you are done, you will understand the following: Mental Act Simple Apprehension Judgment

### 1. Introduction Formal deductive logic Overview

1. Introduction 1.1. Formal deductive logic 1.1.0. Overview In this course we will study reasoning, but we will study only certain aspects of reasoning and study them only from one perspective. The special

### What is reason? The power of the mind to think, understand, and form judgments by a process of logic

WoK 3 Reason What is reason? Webster s Dictionary defines reason as: The power of the mind to think, understand, and form judgments by a process of logic and logic as: reasoning conducted or assessed according

### 6: DEDUCTIVE LOGIC. Chapter 17: Deductive validity and invalidity Ben Bayer Drafted April 25, 2010 Revised August 23, 2010

6: DEDUCTIVE LOGIC Chapter 17: Deductive validity and invalidity Ben Bayer Drafted April 25, 2010 Revised August 23, 2010 Deduction vs. induction reviewed In chapter 14, we spent a fair amount of time

### Basic Concepts and Skills!

Basic Concepts and Skills! Critical Thinking tests rationales,! i.e., reasons connected to conclusions by justifying or explaining principles! Why do CT?! Answer: Opinions without logical or evidential

### In view of the fact that IN CLASS LOGIC EXERCISES

IN CLASS LOGIC EXERCISES Instructions: Determine whether the following are propositions. If some are not propositions, see if they can be rewritten as propositions. (1) I have a very refined sense of smell.

### REASONING SYLLOGISM. Subject Predicate Distributed Not Distributed Distributed Distributed

REASONING SYLLOGISM DISTRIBUTION OF THE TERMS The word "Distrlbution" is meant to characterise the ways in which terrns can occur in Categorical Propositions. A Proposition distributes a terrn if it refers

### 1.5. Argument Forms: Proving Invalidity

18. If inflation heats up, then interest rates will rise. If interest rates rise, then bond prices will decline. Therefore, if inflation heats up, then bond prices will decline. 19. Statistics reveal that

### Announcements. CS243: Discrete Structures. First Order Logic, Rules of Inference. Review of Last Lecture. Translating English into First-Order Logic

Announcements CS243: Discrete Structures First Order Logic, Rules of Inference Işıl Dillig Homework 1 is due now Homework 2 is handed out today Homework 2 is due next Tuesday Işıl Dillig, CS243: Discrete

### INTERMEDIATE LOGIC Glossary of key terms

1 GLOSSARY INTERMEDIATE LOGIC BY JAMES B. NANCE INTERMEDIATE LOGIC Glossary of key terms This glossary includes terms that are defined in the text in the lesson and on the page noted. It does not include

### McKenzie Study Center, an Institute of Gutenberg College. Handout 5 The Bible and the History of Ideas Teacher: John A. Jack Crabtree.

, an Institute of Gutenberg College Handout 5 The Bible and the History of Ideas Teacher: John A. Jack Crabtree Aristotle A. Aristotle (384 321 BC) was the tutor of Alexander the Great. 1. Socrates taught

### PHILOSOPHER S TOOL KIT 1. ARGUMENTS PROFESSOR JULIE YOO 1.1 DEDUCTIVE VS INDUCTIVE ARGUMENTS

PHILOSOPHER S TOOL KIT PROFESSOR JULIE YOO 1. Arguments 1.1 Deductive vs Induction Arguments 1.2 Common Deductive Argument Forms 1.3 Common Inductive Argument Forms 1.4 Deduction: Validity and Soundness

### Logical (formal) fallacies

Fallacies in academic writing Chad Nilep There are many possible sources of fallacy an idea that is mistakenly thought to be true, even though it may be untrue in academic writing. The phrase logical fallacy

### 5.6 Further Immediate Inferences

M05_COPI1396_13_SE_C05.QXD 10/12/07 9:00 PM Page 198 198 CHAPTER 5 Categorical Propositions EXERCISES A. If we assume that the first proposition in each of the following sets is true, what can we affirm

### 13.6 Euler Diagrams and Syllogistic Arguments

EulerDiagrams.nb 1 13.6 Euler Diagrams and Syllogistic rguments In the preceding section, we showed how to determine the validity of symbolic arguments using truth tables and comparing the arguments to

### PRACTICE EXAM The state of Israel was in a state of mourning today because of the assassination of Yztzak Rabin.

PRACTICE EXAM 1 I. Decide which of the following are arguments. For those that are, identify the premises and conclusions in them by CIRCLING them and labeling them with a P for the premises or a C for

### HANDBOOK (New or substantially modified material appears in boxes.)

1 HANDBOOK (New or substantially modified material appears in boxes.) I. ARGUMENT RECOGNITION Important Concepts An argument is a unit of reasoning that attempts to prove that a certain idea is true by

### The Problem of Induction and Popper s Deductivism

The Problem of Induction and Popper s Deductivism Issues: I. Problem of Induction II. Popper s rejection of induction III. Salmon s critique of deductivism 2 I. The problem of induction 1. Inductive vs.

### Symbolic Logic. 8.1 Modern Logic and Its Symbolic Language

M08_COPI1396_13_SE_C08.QXD 10/16/07 9:19 PM Page 315 Symbolic Logic 8 8.1 Modern Logic and Its Symbolic Language 8.2 The Symbols for Conjunction, Negation, and Disjunction 8.3 Conditional Statements and

### Session 10 INDUCTIVE REASONONING IN THE SCIENCES & EVERYDAY LIFE( PART 1)

UGRC 150 CRITICAL THINKING & PRACTICAL REASONING Session 10 INDUCTIVE REASONONING IN THE SCIENCES & EVERYDAY LIFE( PART 1) Lecturer: Dr. Mohammed Majeed, Dept. of Philosophy & Classics, UG Contact Information:

### A Brief Introduction to Key Terms

1 A Brief Introduction to Key Terms 5 A Brief Introduction to Key Terms 1.1 Arguments Arguments crop up in conversations, political debates, lectures, editorials, comic strips, novels, television programs,

### 1.6 Validity and Truth

M01_COPI1396_13_SE_C01.QXD 10/10/07 9:48 PM Page 30 30 CHAPTER 1 Basic Logical Concepts deductive arguments about probabilities themselves, in which the probability of a certain combination of events is

### Fallacies are deceptive errors of thinking.

Fallacies are deceptive errors of thinking. A good argument should: 1. be deductively valid (or inductively strong) and have all true premises; 2. have its validity and truth-of-premises be as evident

### Argumentation. 2. What should we consider when making (or testing) an argument?

. What is the purpose of argumentation? Argumentation 2. What should we consider when making (or testing) an argument? According to Toulmin (964), the checking list can be outlined as follows: () The Claim

### 9 Methods of Deduction

M09_COPI1396_13_SE_C09.QXD 10/19/07 3:46 AM Page 372 9 Methods of Deduction 9.1 Formal Proof of Validity 9.2 The Elementary Valid Argument Forms 9.3 Formal Proofs of Validity Exhibited 9.4 Constructing

### CRITICAL THINKING (CT) MODEL PART 1 GENERAL CONCEPTS

Fall 2001 ENGLISH 20 Professor Tanaka CRITICAL THINKING (CT) MODEL PART 1 GENERAL CONCEPTS In this first handout, I would like to simply give you the basic outlines of our critical thinking model

### Today s Lecture 1/28/10

Chapter 7.1! Symbolizing English Arguments! 5 Important Logical Operators!The Main Logical Operator Today s Lecture 1/28/10 Quiz State from memory (closed book and notes) the five famous valid forms and

### Argument and Persuasion. Stating Opinions and Proposals

Argument and Persuasion Stating Opinions and Proposals The Method It all starts with an opinion - something that people can agree or disagree with. The Method Move to action Speak your mind Convince someone

### LOGICAL FALLACIES/ERRORS OF ARGUMENT

LOGICAL FALLACIES/ERRORS OF ARGUMENT Deduction Fallacies Term Definition Example(s) 1 Equivocation Ambiguity 2 types: The word or phrase may be ambiguous, in which case it has more than one distinct meaning

### Handout 1: Arguments -- the basics because, since, given that, for because Given that Since for Because

Handout 1: Arguments -- the basics It is useful to think of an argument as a list of sentences.[1] The last sentence is the conclusion, and the other sentences are the premises. Thus: (1) No professors

### assertoric, and apodeictic and gives an account of these modalities. It is tempting to

Kant s Modalities of Judgment Jessica Leech Abstract This paper proposes a way to understand Kant's modalities of judgment problematic, assertoric, and apodeictic in terms of the location of a judgment

### A Judgmental Formulation of Modal Logic

A Judgmental Formulation of Modal Logic Sungwoo Park Pohang University of Science and Technology South Korea Estonian Theory Days Jan 30, 2009 Outline Study of logic Model theory vs Proof theory Classical

### CRITICAL THINKING. Formal v Informal Fallacies

CRITICAL THINKING FAULTY REASONING (VAUGHN CH. 5) LECTURE PROFESSOR JULIE YOO Formal v Informal Fallacies Irrelevant Premises Genetic Fallacy Composition Division Appeal to the Person (ad hominem/tu quoque)

### Announcements. CS311H: Discrete Mathematics. First Order Logic, Rules of Inference. Satisfiability, Validity in FOL. Example.

Announcements CS311H: Discrete Mathematics First Order Logic, Rules of Inference Instructor: Işıl Dillig Homework 1 is due now! Homework 2 is handed out today Homework 2 is due next Wednesday Instructor:

### An Inferentialist Conception of the A Priori. Ralph Wedgwood

An Inferentialist Conception of the A Priori Ralph Wedgwood When philosophers explain the distinction between the a priori and the a posteriori, they usually characterize the a priori negatively, as involving

### Philosophy 12 Study Guide #4 Ch. 2, Sections IV.iii VI

Philosophy 12 Study Guide #4 Ch. 2, Sections IV.iii VI Precising definition Theoretical definition Persuasive definition Syntactic definition Operational definition 1. Are questions about defining a phrase

Hughes, R. I. G. The Structure and Interpretation of Quantum Mechanics. Cambridge, MA: Harvard University Press, 1989. Kripke, Saul. Is There a Problem about Substitutional Quantification? In Truth and

### Exercise Sets. KS Philosophical Logic: Modality, Conditionals Vagueness. Dirk Kindermann University of Graz July 2014

Exercise Sets KS Philosophical Logic: Modality, Conditionals Vagueness Dirk Kindermann University of Graz July 2014 1 Exercise Set 1 Propositional and Predicate Logic 1. Use Definition 1.1 (Handout I Propositional

### Exposition of Symbolic Logic with Kalish-Montague derivations

An Exposition of Symbolic Logic with Kalish-Montague derivations Copyright 2006-13 by Terence Parsons all rights reserved Aug 2013 Preface The system of logic used here is essentially that of Kalish &

### The Logic of Confusion. Remarks on Joseph Camp s Confusion: A Study in the Theory of Knowledge. John MacFarlane (University of California, Berkeley)

The Logic of Confusion Remarks on Joseph Camp s Confusion: A Study in the Theory of Knowledge John MacFarlane (University of California, Berkeley) Because I am color blind, I routinely wear mismatched

### Indian Philosophy Paper-I

1 Total Question -30+20+30+35+35=150 Indian Philosophy Paper-I 1.Describe the Carvaka position that perception is the only means of knowledge. 5 2.What are the conditions for Testimony, to be a valid source

### The problems of induction in scientific inquiry: Challenges and solutions. Table of Contents 1.0 Introduction Defining induction...

The problems of induction in scientific inquiry: Challenges and solutions Table of Contents 1.0 Introduction... 2 2.0 Defining induction... 2 3.0 Induction versus deduction... 2 4.0 Hume's descriptive

### Definite Descriptions and the Argument from Inference

Philosophia (2014) 42:1099 1109 DOI 10.1007/s11406-014-9519-9 Definite Descriptions and the Argument from Inference Wojciech Rostworowski Received: 20 November 2013 / Revised: 29 January 2014 / Accepted:

### Faith indeed tells what the senses do not tell, but not the contrary of what they see. It is above them and not contrary to them.

19 Chapter 3 19 CHAPTER 3: Logic Faith indeed tells what the senses do not tell, but not the contrary of what they see. It is above them and not contrary to them. The last proceeding of reason is to recognize

### Ayer and Quine on the a priori

Ayer and Quine on the a priori November 23, 2004 1 The problem of a priori knowledge Ayer s book is a defense of a thoroughgoing empiricism, not only about what is required for a belief to be justified

### Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world Visit us on the World Wide Web at: www.pearsoned.co.uk Pearson Education Limited 2014

### b) The meaning of "child" would need to be taken in the sense of age, as most people would find the idea of a young child going to jail as wrong.

Explanation for Question 1 in Quiz 8 by Norva Lo - Tuesday, 18 September 2012, 9:39 AM The following is the solution for Question 1 in Quiz 8: (a) Which term in the argument is being equivocated. (b) What

### Directions: For Problems 1-10, determine whether the given statement is either True (A) or False (B).

Critical Thinking Exam 2: Chapter 3 PLEASE DO NOT WRITE ON THIS EXAM. Directions: For Problems 1-10, determine whether the given statement is either True (A) or False (B). 1. Valid arguments never have

### The Little Logic Book Hardy, Ratzsch, Konyndyk De Young and Mellema The Calvin College Press, 2013

The Little Logic Book Hardy, Ratzsch, Konyndyk De Young and Mellema The Calvin College Press, 2013 Exercises for The Little Logic Book may be downloaded by the instructor as Word documents and then modified

### What are Truth-Tables and What Are They For?

PY114: Work Obscenely Hard Week 9 (Meeting 7) 30 November, 2010 What are Truth-Tables and What Are They For? 0. Business Matters: The last marked homework of term will be due on Monday, 6 December, at

### Introduction to Logic

University of Notre Dame Fall, 2015 Arguments Philosophy is difficult. If questions are easy to decide, they usually don t end up in philosophy The easiest way to proceed on difficult questions is to formulate

### 2016 Philosophy. Higher. Finalised Marking Instructions

National Qualifications 06 06 Philosophy Higher Finalised Marking Instructions Scottish Qualifications Authority 06 The information in this publication may be reproduced to support SQA qualifications only

### A star (*) indicates that there are exercises covering this section and previous unmarked sections.

1 An Introduction To Reasoning Some Everyday Reasoning 1 Introduction 2 Reasoning Based On Properties 3 Part-Whole Relationships 4 Reasoning With Relations 5 The Tricky Verb 'To Be' 6 Reasoning With Categorical

### DOES ETHICS NEED GOD?

DOES ETHICS NEED GOD? Linda Zagzebski ntis essay presents a moral argument for the rationality of theistic belief. If all I have to go on morally are my own moral intuitions and reasoning and those of